
8
DIALOGS AND ALERTS
 Demonstration Program: DialogsAndAlerts

Introduction
Your application should present alerts to the user whenever an unexpected or undesirable situation occurs.
Before your application carries out a command, it may present a dialog to solicit additional information
from the user or to allow the user to modify settings.

Alert Types, Modalities, and Levels

Alert Types and Modalities
There are three types of alert, namely, the modal alert, the movable modal alert, and, on Mac OS X only,
the sheet alert. The three types are shown at Fig 1.

Modal Alert
The fixed-position modal alert places the user in the state, or mode, of being able to work only inside the
alert. The only response the user receives when clicking anywhere outside the alert is the alert sound. The
modal alert is thus system-modal, meaning that is denies user interaction with anything but the alert until it
is dismissed.
There will be very few, if any, situations where the use of a modal alert in your application is justified.

Movable Modal Alert
Movable modal alerts retain the essentially modal characteristic of their fixed-position counterpart, the
main differences being that they allow the user to drag the alert so as to uncover obscured areas of an
underlying window and bring another application to the front. Movable modal alerts are thus application-
modal.

Window-Modal (Sheet) Alert — Mac OS
X

Mac OS X introduced a new type of alert called the sheet alert. Sheet alerts, which are invariably attached
to an owner window, are window-modal. The information conveyed by the alert, or the alternative actions
requested, should pertain only to the document to whose window the alert is attached.

Dialogs and Alerts Version 1.0 8-1

Levels of Alert
Modal and movable modal alerts can display one of three levels of alert (see Fig 1), depending on the
nature of the situation the alert is reporting to the user. The three levels of alert, which, on Mac OS 8/9, are
identified by icons supplied automatically by the system, are as follows:

 Note Level. The note level (see Fig 1) is used to inform users of an occurrence that will not
have serious consequences. Usually, a note level alert simply offers information, although it may
ask a simple question and provide, via the push buttons, a choice of responses.

 Caution Level. The caution level is used to alert the user to an operation that may have
undesirable results if it is allowed to continue. As shown at Fig 1, you should provide the user, via
the push buttons, with a choice of whether to continue with, or back out of, the operation.

 Stop Level. The stop level is used to inform the user of a situation so serious that the operation
cannot proceed.

FIG 1 - TYPES AND LEVELS OF ALERTS

MOVABLE MODAL ALERT (NOTE LEVEL)

MOVABLE MODAL ALERT (CAUTION LEVEL)

MODAL ALERT (STOP LEVEL)

WINDOW-MODAL (SHEET) ALERT

The Mac OS X window layering model, in which
document windows from different applications can
be interleaved, makes it necessary to indicate to
the user which application is displaying the alert.
This is achieved by the inclusion of the
application's icon in the alert.

Note that, at the time of writing, there was no visual distinction between alert levels on Mac OS X, the
application icon rather than distinct note, caution, and stop icons being displayed. At the time of writing, it
was expected that Carbon would eventually support the "badging" of the application icon with alert level
badges similar to the Mac OS 8/9 note, caution, and stop icons.

Dialog Types and Modalities
There are four types of dialog, namely, modal dialogs, movable modal dialogs, modeless dialogs, and, on
Mac OS X only, sheet dialogs. The four types are illustrated in the examples at Fig 2.

8-2 Version 1.0 Dialogs and Alerts

FIG 2 - TYPES OF DIALOGS

MODAL DIALOG

MOVABLE MODAL DIALOG

MODELESS DIALOG

WINDOW-MODAL (SHEET) DIALOG

Modal Dialog
Fixed-position modal dialogs place the user in the state, or mode, of being able to work only inside the
dialog. The only response the user receives when clicking outside the dialog is the alert sound. The modal
alert is thus system-modal, meaning that is denies user interaction with anything but the dialog until it is
dismissed.
There will be very few, if any, situations where the use of a modal dialog in your application is justified.

Movable Modal Dialog
Movable modal dialogs retain the essentially modal characteristic of their fixed-position counterpart, the
main differences being that they allow the user to drag the dialog so as to uncover obscured areas of an
underlying window and bring another application to the front. Movable modal dialogs are thus
application-modal.
The absence of boxes/buttons in the title bar of a movable modal dialog visually indicates to the user that
the dialog is modal rather than modeless.

Modeless Dialog
Modeless dialogs look very like document windows, except for their interior colour/pattern and, on Mac
OS 8/9, a one-pixel frame just inside the window frame. Unlike document windows, however, modeless
dialogs should not contain scroll bars or a size box/resize control.

Dialogs and Alerts Version 1.0 8-3

Modeless dialogs should not require the user to dismiss them before the user is able to do anything else.
Thus modeless dialogs should be made to behave much like document windows in that the user should be
able to move them, bring other windows in front of them, and close them.
Modeless dialogs should ordinarily not have a Cancel push button, although they may have a Stop push
button to halt long operations such as searching.

Window-Modal (Sheet) Dialog — Mac OS X
Mac OS X introduced a new type of dialog called the sheet dialog. Sheet dialogs, which are invariably
attached to an owner window, are window-modal. The information or settings solicited by the dialog
should pertain only to the document to whose window the dialog is attached.

Window Types For Alerts and Dialogs
Fig 3 shows the seven (eight on Mac OS X) available window types for alerts and dialogs and the constants
that represent the window definition IDs for those types. Note that modeless dialogs are a special case in
that a normal document window type is used.

FIG 3 - WINDOW TYPES FOR DIALOGS AND ALERTS

kWindowMovableAlertProc

kWindowPlainDialogProc

kWindowShadowDialogProc

kWindowMovableModalGrowProc

kWindowModalDialogProc

kWindowMovableModalDialogProc

Modal dialog.

Modal dialog, shadow.

Modal dialog.

Movable modal dialog.

kWindowAlertProc

Modal alert.

Movable modal alert.

Movable modal dialog box with
size box.

Modal dialog.

Modal dialog, shadow.

Modal dialog.Modal alert.

Movable modal dialog.

Movable modal dialog with resize
control

Movable modal alert .

 kWindowSheetProc

Sheet alert and dialog .

The window definition ID is derived by multiplying the resource ID of the WDEF by 16 and adding the
variation code to the result, as is shown in the following:

8-4 Version 1.0 Dialogs and Alerts

WDEF
Resource
ID

Variat
ion
Code

Window
Definition ID
(Value)

Window Definition ID
(Constant)

65 0 65 * 16 + 0 = 1040 kWindowPlainDialogProc
65 1 65 * 16 + 1 = 1041 kWindowShadowDialogProc
65 2 65 * 16 + 2 = 1042 kWindowModalDialogProc
65 3 65 * 16 + 3 = 1043 kWindowMovableModalDialogProc
65 4 65 * 16 + 4 = 1044 kWindowAlertProc
65 5 65 * 16 + 5 = 1045 kWindowMovableAlertProc
65 6 65 * 16 + 6 = 1046 kWindowMovableModalGrowProc
64 0 64 * 16 + 0 = 1024 kWindowDocumentProc (Used for modeless dialogs.)
68 0 68 * 16 + 0 = 1088 kWindowSheetProc

Content of Alerts and Dialogs
Alerts should usually contain only informative text and push button controls. Dialogs may contain
informative or instructional text and controls.

Default Push Buttons
Your application should specify a default push button for every alert and dialog. The default push button,
visually identified by a default ring drawn around it (Mac OS 8/9) or pulsing blue (Mac OS X), should be
the one the user is more likely to click in most circumstances. If the most likely choice is at all destructive
(for example, erasing a disk or deleting a file), you should consider defining the Cancel button as the
default. (See the caution alert at Fig 1.)

Removing Dialogs
Your application should remove and dispose of a modal, movable modal, and window-modal (sheet)
dialogs only when the user clicks one of its push buttons.
Your application should not remove a modeless dialog unless the user clicks its close box/button or
chooses Close from the File menu when the modeless dialog is the active window. (Typically, a modeless
dialog is simply hidden, not disposed of, when the user clicks the close box/button or chooses Close from
the File menu.)

Creating and Removing Alerts
Alerts may be created from resources using the functions Alert, NoteAlert, CautionAlert and StopAlert, which
take descriptive information about the alert from alert ('ALRT') and extended alert ('alrx') resources.
However, the preferred (and considerably simpler) method is to create alerts programmatically using the
functions StandardAlert and, on Mac OS X only, CreateStandardAlert.
Fig 4 shows an alert created by StandardAlert and CreateStandardAlert.

FIG 4 - ALERTS CREATED WITH StandardAlert AND CreateStandardAlert

Cancel buttonOther button OK button (default)

Application icon 64 x 64

Cancel buttonOther button OK button (default)

Dialogs and Alerts Version 1.0 8-5

The StandardAlert Function
When an alert is created using the function StandardAlert, the alert is automatically sized based on the
amount of text passed in to it, and push buttons are automatically sized and located.

OSErr StandardAlert(AlertType inAlertType,ConstStr255Param inError,
 ConstStr255Param inExplanation,
 const AlertStdAlertParamRec *inAlertParam,SInt16 *outItemHit);

inAlertType The level of alert. Relevant constants are:
kAlertStopAlert
kAlertNoteAlert
kAlertCautionAlert
kAlertPlainAlert

inError The label text (Mac OS 8/9) or message text (Mac OS X).
inExplanation The narrative text (Mac OS 8/9) or informative text (Mac OS X). NULL indicates no

narrative/informative text.
inAlertParam A pointer to a standard alert parameter structure (see below). NULL indicates that

none of the features provided by the standard alert structure are required.
outItemHit On return, contains the item number of the push button that the user hit.

Standard Alert Parameter Structure
The standard alert parameter structure is as follows:

struct AlertStdAlertParamRec
{
 Boolean movable;
 Boolean helpButton;
 ModalFilterUPP filterProc;
 ConstStringPtr defaultText;
 ConstStringPtr cancelText;
 ConstStringPtr otherText;
 SInt16 defaultButton;
 SInt16 cancelButton;
 UInt16 position;
};
typedef struct AlertStdAlertParamRec AlertStdAlertParamRec;
typedef AlertStdAlertParamRec *AlertStdAlertParamPtr;

Field Descriptions
movable Specifies whether the alert is modal or movable modal.
helpButton Specifies whether the alert should include the Help button.
filterProc Optionally, a universal procedure pointer to an application-defined event filter (callback)

function. If NULL is assigned, the Dialog Manager uses the standard event filter (callback)
function. (See Event Filter (Callback) Functions For Modal and Movable Modal Alerts
and Dialogs, below).

defaultText Optionally, text for the push button in the OK push button1, position. (See Alert Default
Text Constants, below). The push button is automatically sized and positioned to
accommodate the text.

cancelText Optionally, text for the push button in the Cancel push button position. (See Alert Default
Text Constants, below.) The push button is automatically sized and positioned to
accommodate the text. Pass NULL to specify that a Cancel push button should not be
displayed.

otherText Optionally, text for the push button in leftmost position. (See Alert Default Text
Constants, below.) The push button is automatically sized and positioned to

1 The push button in the OK button position is not necessarily named OK. Human Interface Guidelines require that, wherever
possible, buttons be named with a verb that describes the action that they perform. (As an example, see the buttons at Fig 1.)

8-6 Version 1.0 Dialogs and Alerts

accommodate the text. Pass NULL to specify that the leftmost push button should not be
displayed.

defaultButton Specifies which push button is to act as the default push button. (See Alert Push Button
Constants, below.)

cancelButton Specifies which push button is to act as the Cancel push button. Can be 0. (See Alert
Button Constants, below.)

position The alert position. (See Positioning Specification, below, and note that, when these
constants are used to specify alert position in an alert created programmatically using
StandardAlert, the constant kWindowDefaultPosition has the same effect as
kWindowAlertPositionParentWindowScreen.)

Alert Default Text Constants
To specify the default text for the push buttons in the Right, Middle, and Leftmost push button positions,
use these constants in the defaultText, cancelText, and otherText fields of the standard alert structure:

Constant Value Button
Position

Default
Text

Where Used

kAlertDefaultOKText -1 Right OK defaultText field
kAlertDefaultCancelText -1 Middle Cancel cancelText field
kAlertDefaultOtherText -1 Leftmost Don't Save otherText field

Alert Push Button Constants
To specify which push buttons act as the default and Cancel push buttons, use these constants in the
defaultButton and cancelButton fields in the standard alert structure:

Constant Valu
e

Meaning

kAlertStdAlertOKButton 1 The OK push button.
kAlertStdAlertCancelButton 2 The Cancel push button.
kAlertStdAlertOtherButton 3 A third push button.

Positioning Specification
The main constants for the positioning specification field are as follows:

Constant Value Menaing
kWindowDefaultPosition 0x0000 Alert position on screen where user is currently

working.
kWindowAlertPositionMainScreen 0x300A Alert position on main screen. (The main screen in

a multi-monitor system is the screen on which the
menu bar is located.)

kWindowAlertPositionParentWindow 0xB00A Alert position on frontmost window.
kWindowAlertPositionParentWindowScreen 0x700A Alert position on screen where user is currently

working.
kWindowCenterMainScreen 0x280A Centre on main screen.
kWindowCenterParentWindow 0xA80A Centre on frontmost window.
kWindowCenterParentWindowScreen 0x680A Centre on screen where user is currently working.

The CreateStandardAlert Function
On Mac OS X only, you may also use the function CreateStandardAlert to create an alert:

OSStatus CreateStandardAlert(AlertType inAlertType, CFStringRef inError,
 CFStringRef inExplanation,
 const AlertStdCFStringAlertParamRec *param,
 DialogRef *outAlert);

Dialogs and Alerts Version 1.0 8-7

The main differences between the CreateStandardAlert and StandardAlert functions are as follows:
 The inError and inExplanation fields take a CFStringRef.

 A pointer to a standard CFString alert parameter structure is passed in the param parameter.
This structure is basically similar to the standard alert parameter structure except that:

 It has no field for a universal procedure pointer to an event filter (callback) function.

 The defaultText, cancelText, and otherText fields are of type CFStringRef.

 It has an additional field (flags) in which bits can be set to specify options for the behaviour of
the dialog. Setting the kStdAlertDoNotDisposeSheet bit in this field when the dialog is a sheet
causes the sheet not to be disposed of after it is hidden.

A call to the function GetStandardAlertDefaultParams initialises a standard CFString alert parameter
structure with default values. (The defaults are: not movable; no Help button; no Cancel button; no
Other button; alert position on parent window screen.)

 On return, a pointer to a dialog reference is received in the outAlert parameter. This must be passed
in a call to the function RunStandardAlert, which displays the alert and handles user interaction. A
universal procedure pointer to an event filter (callback) function may be passed in the filterProc
parameter of this function. On return, the item number of the push button that the user hit is
received in the outItemHit parameter of RunStandardAlert.

Removal of Alerts
The Dialog Manager automatically removes and disposes of an alert when the user clicks a push button.

Creating Dialogs
Dialogs may be created in one of two ways, as follows:

 You can create dialogs from resources using the function GetNewDialog, which takes descriptive
information about the dialog from dialog ('DLOG') and extended dialog ('dlgx') resources. The
resource ID of the 'DLOG' and 'dlgx' resources must be the same, and is passed in the first parameter of
this function.

 You can create dialogs programmatically using the function NewFeaturesDialog. NewFeaturesDialog has
a flags parameter containing the same flags you would set in an extended dialog resource when
creating the dialog from resources.

Regardless of which method is used to create the dialog, a dialog object will be created, and a pointer to
that object will be returned to the calling function. The dialog object itself includes a window object.

The Dialog Object
Dialog objects are opaque data structures in which the Dialog Manager stores information about individual
dialogs. The data type DialogRef is defined as a pointer to a dialog object:

typedef struct OpaqueDialogPtr *DialogPtr;
typedef DialogPtr DialogRef;

Accessor Functions
The following accessor functions are provided to access the information in dialog objects.

Function Description
GetDialogWindow Gets a reference to the dialog's window object.
GetDialogTextEditHandle Gets a handle to the TERec structure (which is re-used for all edit text items).
GetDialogKeyboardFocusItem Gets item number of the item with keyboard focus.
GetDialogDefaultItem Gets the item number of the default push button.

8-8 Version 1.0 Dialogs and Alerts

SetDialogDefaultItem Tells the Dialog Manager the item number of the default push button.
GetDialogCancelItem Gets the item number of the default Cancel push button.
SetDialogCancelItem Tells the Dialog Manager the item number of the default Cancel button.
AppendDITL
AppendDialogItemList
ShortenDITL
InsertDialogItem
RemoveDialogItem

Add items to, and remove items from, a dialog.

'DLOG' and 'dlgx' Resources
Structure of a Compiled 'DLOG'
Resource

Fig 5 shows the structure of a compiled 'DLOG' resource and how it "feeds" the dialog object.

FIG 5 - STRUCTURE OF A COMPILED DIALOG ('DLOG') RESOURCE

RECTANGLE

WINDOW DEFINITION ID
VISIBILITY
RESERVED

CLOSE BOX SPECIFICATION
RESERVED

ITEM LIST ID

8

2

2

2

4

1

BYTES

REFERENCE CONSTANT

ALIGNMENT BYTE
POSITIONING SPECIFICATION

WINDOW TITLE

1
1
1
1

1 to 256

Dialog Object
Window structure
Handle to the item list resource
Handle to TERec structure
Item number of Cancel button item
Item number of Default button item

The following describes the main fields of the 'DLOG' resource:

Field Description
RECTANGLE The dialog's dimensions and, if a positioning specification (see below) is not specified, its

location.
WINDOW DEFINITION ID The window definition ID. (See Window Types For Alerts and Dialogs, above.)
VISIBILITY If set to 1, the Dialog Manager displays the dialog as soon as GetNewDialog is called. If set to 0,

the dialog is not displayed until ShowWindow is called.
CLOSE BOX
SPECIFICATION

Specifies whether to draw a close box/button. Ordinarily, a close box/button is specified only
for modeless dialogs.

REFERENCE CONSTANT Applications can store any value here. For example, an application might store a number that
represents the dialog type. SetWRefCon and GetWRefCon tmay be used to set and get this value.

ITEM LIST ID Resource ID of the item list resource.
WINDOW TITLE The title displayed in the dialog's title bar (modeless and movable modal dialogs only).
POSITIONING
SPECIFICATION

Specifies the position of the dialog on the screen. If a positioning constant is not provided, the
Dialog Manager places the dialog at the global coordinates specified for the dialog's rectangle
(see above). The same positioning constants as apply in the case of an alert apply. (See
Positioning Specification, above, but note that, in the case of 'DLOG' resources,
kWindowDefaultPosition means that the window will be positioned according to the RECTANGLE
field.)

Dialogs and Alerts Version 1.0 8-9

Structure of a Compiled 'dlgx' Resource
Fig 6 shows the structure of a compiled 'dlgx' resource. This resource allows you to provide additional
features for your dialog, including movable modal behaviour, background colour/pattern, and embedding
hierarchies.

FIG 6 - STRUCTURE OF A COMPILED DIALOG ('dlgx') RESOURCE

BYTES
VERSION NUMBER

DIALOG FLAGS

2

4

The following describes the main field of the 'dlgx' resource:

Field Description
DIALOG
FLAGS

Constants that specify the dialog’s Appearance features. (See Dialog Feature Flag Constants, below.)

Dialog Feature Flag Constants
You can set the following bits in the dialog flags field of a 'dlgx' resource to specify the dialog's features:

Constant Bi
t

Meaning If Set

kDialogFlagsUseThemeBackground 0 The Dialog Manager sets the correct dialog background colour/pattern.
kDialogFlagsUseControlHierarchy 1 A root control is created and an embedding hierarchy is established.

Note: All items in a dialog automatically become controls when
embedding hierarchy is established.

kDialogFlagsHandleMovableModal 2 The dialog will be movable modal (in which case you must use
kWindowMovableModalDialogProc window definition ID). (The Dialog
Manager handles movable modal behaviour.)

kDialogFlagsUseThemeControls 3 All controls created by the Dialog Manager will be compliant with the
Platinum appearance.

Creating 'dlgx ' and 'DLOG' Resources
Using Resorcerer

Creating 'dlgx' Resources
Fig 7 shows a 'dlgx' resource being created with Resorcerer.

STRUCTURE OF A COMPILED DIALOG ('dlgx') RESOURCE
VERSION NUMBER

DIALOG FLAGS

RESORCERER ''dlgx' RESOURCE EDITING WINDOW

FIG 7 - CREATING A 'dlgx' RESOURCE USING RESORCERER

Creating 'DLOG' Resources
Fig 8 shows a 'DLOG' resource being created with Resorcerer.

8-10 Version 1.0 Dialogs and Alerts

FIG 8 - CREATING A 'DLOG' RESOURCE USING RESORCERER

STRUCTURE OF A COMPILED DIALOG ('DLOG') RESOURCE

RECTANGLE

WINDOW DEFINITION ID
VISIBILITY
RESERVED

CLOSE BOX SPECIFICATION
RESERVED

ITEM LIST ID

REFERENCE CONSTANT

ALIGNMENT BYTE

WINDOW TITLE

POSITIONING SPECIFICATION

RESORCERER 'DLOG' RESOURCE EDITING WINDOW

The NewFeaturesDialog Function
The function NewFeaturesDialog creates a dialog from the information passed in its parameters.

DialogRef NewFeaturesDialog(void *inStorage,const Rect *inBoundsRect,
 ConstStr255Param inTitle,Boolean inIsVisible,
 SInt16 inProcID,WindowRef inBehind,Boolean inGoAwayFlag,
 SInt32 inRefCon,Handle inItemListHandle,UInt32 inFlags);

Returns: A pointer to the new dialog, or NULL if the dialog is not created

inStorage A pointer to the memory for the dialog object. In Carbon, this should always be
set to NULL, which causes the Dialog Manager to automatically allocate memory
for the dialog object.

inBoundsRect A rectangle which specifies the size and position of the dialog in global
coordinates.

inTitle The title of a modeless or movable modal dialog. You can specify an empty string
(not NULL) if the dialog is to have no title. (In C, you specify an empty string by
two double quotation marks ("").)

inIsVisible Specifies whether the dialog should be drawn immediately after NewFeatureDialog is
called. If this parameter is set to false, ShowWindow must be called to display the
dialog.

inProcID The window definition ID for the type of dialog. Pass kWindowModalDialogProc in
this parameter to specify modal dialogs, kWindowMovableModalDialogProc to specify
movable modal dialogs, and kWindowDocumentProc to specify modeless dialogs.

inBehind A reference to the window behind which the dialog is to be opened. Pass
(WindowRef) -1 in this parameter to open the dialog in front of all other windows.

inGoAwayFlag Passing true in this parameter causes a close box/button to be drawn in the title bar.
true should only be passed when a modeless dialog is being created.

inRefCon A reference constant that the Dialog Manager stores in the dialog’s window object.
Applications can store any value here. For example, an application might store a
number that represents the dialog type. GetWRefCon may be used to retrieve this
value.

inItemListHandle A handle to the item list resource, which you can get by calling GetResource to read
the item list resource into memory.

Dialogs and Alerts Version 1.0 8-11

inFlags The dialog’s feature flags. (See Dialog Feature Flag Constants, above.)
Although the inItemListHandle parameter specifies an item list ('DITL') resource for the dialog, the
corresponding dialog font table ('dftb') resource (see below) is not automatically accessed. You must
explicitly set the dialog’s control font styles individually.

Items in Dialogs

Preamble — Dialog Manager Primitives
Dialogs contain items, such as push buttons, radio buttons, and checkboxes. Prior to the introduction of
Mac OS 8 and the Appearance Manager, an actual control could be an item; however, items such as push
buttons and radio buttons were not controls as such but rather Dialog Manager primitives.
These primitives may still be specified in item list resources (see below). However, when a root control
has been created for the dialog window, thus creating an embedding hierarchy for controls, the Dialog
Manager replaces any primitives in the dialog with their control counterparts (except for the primitive
called a user item).
The situation where all items in a dialog are controls has many advantages. For example, all controls
within the dialog can be activated and deactivated by simply activating and deactivating the root control.
The primitives, and their control equivalents, are as follows:

Dialog Manager Primitive Control Equivalent
Button. Push button.
Radio Button. Radio button.
Checkbox. Checkbox.
Edit Text. Edit text control.
Static Text. Static text control.
Icon. (An icon whose black and white resource is stored in an 'ICON' resource and whose
colour version is stored in a 'cicn' resource with the same ID.)

Icon control (no track variant).

Picture. (Picture stored in a 'PICT' resource.) Picture control (no track variant).
User Item. (An application-defined item. For example, an application-defined drawing
function could be installed in a user item.)

(No control equivalent.)

The 'DITL' Resource
A ('DITL') resource is used to store information about all the items in a dialog. The 'DITL' resource ID is
specified in the associated 'DLOG' resource, or a handle to the 'DITL' resource is passed in the inItemListHandle
parameter of the NewFeaturesDialog function. 'DITL' resources should be marked as purgeable.
Items are usually referred to by their position in the item list, that is, by their item number.
Several independent dialogs may use the same 'DITL' resource. AppendDITL, AppendDialogItemList, and
ShortenDITL may be used to modify or customise copies of shared item list resources for use in individual
dialogs.
Fig 9 shows the structure of a compiled 'DITL' resource and one of its constituent items, in this case a control
item.

8-12 Version 1.0 Dialogs and Alerts

FIG 9 - STRUCTURE OF A COMPILED ITEM LIST ('DITL') RESOURCE AND A TYPICAL ITEM

TYPICAL ITEM (A CONTROL ITEM)COMPILED 'DITL' RESOURCE

2

BYTES

RESERVED

DISPLAY RECTANGLE

ENABLE FLAG ITEM TYPE (7 BITS)
RESERVED

RESOURCE ID

4

8

1
1Variable

2
BYTES

ITEM COUNT MINUS 1

LAST ITEM VARIABLE FORMAT

FIRST ITEM (VARIABLE FORMAT) Variable

The structure of a compiled button, checkbox, radio button,
static text, and editable text item is similar, except that it has
an additional 1-to-256 byte Text field.

The following describes the fields of the 'DITL' resource and the control item:

Field Description
ITEM COUNT MINUS
1

A value equal to one less than the number of items in the resource.

FIRST ITEM ... LAST
ITEM

(The format of each item depends on its type.)

DISPLAY RECTANGLE The size and location, in local coordinates, of the item within the dialog. (See Display Rectangles,
below.)

ENABLE FLAG Specifies whether the item is enabled or disabled. If this bit is set (item is enabled) the Dialog
Manager reports all mouse-down events in the item to your application

ITEM TYPE The item type.
RESOURCE ID For a control item, the resource ID of the 'CNTL' resource.

Display Rectangles
The enclosing rectangle you specify in a control's 'CNTL' resource should be identical to the display
rectangle specified in the 'DITL' resource.2
Note that, for items that are controls, the rectangle added to the update region is the rectangle defined in the
'CNTL' resource, not the display rectangle specified in the 'DITL' resource. Other important aspects of display
rectangles are as follows:

 Edit Text Items. In edit text items, the display rectangle is the TextEdit destination rectangle
and view rectangle (see Chapter 21). For display rectangles that are large enough to contain more
than one line of text, word wrapping occurs within the rectangle. The text is clipped if it overflows
the rectangle.

 Static Text Item. Static text items are drawn within the display rectangle in the same manner
as edit text items except that a frame is not drawn around the text.

 Icon and Picture Items. Icons and pictures larger than the display rectangle are scaled so
as to fit the display rectangle.

 The Dialog Manager considers a click anywhere in the display rectangle to be a click in that item.
In the case of a click in the overlap area of overlapping display rectangles, the Dialog Manager
reports the click as occurring in the item that appears first in the item list.

Creating a 'DITL' Resource Using
Resorcerer

Fig 10 shows a 'DITL' resource being created with Resorcerer. Two items are being edited (Item 1 and Item
2). Item 1 is a Dialog Manager primitive. Item 2 is a control.

2 Resorcerer has a Preferences setting which forces conformity between the display rectangle specified in the 'DITL' resource
and the display rectangle specified in the 'CNTL' resource.

Dialogs and Alerts Version 1.0 8-13

FIG 10 - CREATING A 'DITL' RESOURCE USING RESORCERER

RESERVED

DISPLAY RECTANGLE

ENABLE FLAG ITEM TYPE (7 BITS)
RESERVED

RESOURCE ID

STRUCTURE OF A COMPILED CONTROL ITEM

RESERVED

DISPLAY RECTANGLE

ENABLE FLAG ITEM TYPE (7 BITS)

ALIGNMENT BYTE

TEXT

STRUCTURE OF A COMPILED BUTTON ITEM (PRIMITIVE) Chosen from Item
menu, New Item item

Chosen from Item
menu, New Item item

In this example:
• Item 1 is a Button primitive
• Item 2 is a Push Button control

Layout Guidelines For Dialogs
Layout guidelines for items in dialogs are contained in the Apple publications Mac OS 8 Human Interface
Guidelines (Mac OS 8/9) and Aqua Human Interface Guidelines (Mac OS X). These guidelines are not
consistent on matters such as the required sizes of certain items and, more particularly, the required spacing
between items. For Carbon applications, it is best to observe the Aqua interface guidelines when laying
out dialog items.

Default Push Buttons
You should give every dialog a default push button, except for those that contain edit text items that accept
Return key presses. If you do not provide an event filter (callback) function (see Event Filter (Callback)
Functions For Modal and Movable Modal Alerts and Dialogs, below) which specifies otherwise, the
Dialog Manager treats the first item in the item list resource as the default push button for the purpose of
responding to Return and Enter key presses.

Enabling and Disabling Items
You should not necessarily enable all items. For example, you typically disable static text items and edit
text items because your application does not need to respond to clicks in those items.

8-14 Version 1.0 Dialogs and Alerts

Note that disabled is not the same thing as a deactivated. The Dialog Manager makes no visual distinction
between a disabled and enabled item; it simply does not inform your application when the user clicks a
disabled item. On the other hand, when a control is deactivated, the Control Manager dims it to show that
it is deactivated.

Keyboard Focus
Edit text and clock items accept input from the keyboard, and list box items respond to certain key presses.
The Dialog Manager automatically responds to mouse-down events and Tab key-down events intended to
shift the keyboard focus between such items, indicating the current target by drawing a keyboard focus
frame around that item. For edit text items, the Dialog Manager also automatically displays the insertion
point caret in the current target. For clock items, the Dialog Manager, in addition to drawing the keyboard
focus frame, also moves the keyboard target within the clock by highlighting the individual parts.
The Tab key moves the keyboard focus between such items in a sequence determined by their order in the
item list. Accordingly, you should ensure that the item numbers of these items in the 'DITL' resource reflect
the sequence in which you require them to be selected by successive Tab key presses.

Manipulating Items
Functions for Manipulating Items

Dialog Manager functions for manipulating items are as follows:

Function Description
GetDialogItemAsControl Returns the control reference for an item in an embedding hierarchy. Should be used

instead of GetDialogItem (see below) when an embedding hierarchy is established.
GetDialogItem Returns the control reference, item type, and display rectangle of a given item. When an

embedding hierarchy is present, you should generally use GetDialogItemAsControl instead of
GetDialogItem to get a reference to the control.
When called on a static text item, GetDialogItem returns a handle to the text, not a reference
to the control, and thus may be used to get a handle to the text of static text items. (When
called on a static text item, GetDialogItemAsControl returns a reference to the control, not a
handle to the text.)

SetDialogItem When an embedding hierarchy does not exist, sets the item type, reference, and display
rectangle of an item. (When an embedding hierarchy exists, you cannot change the type or
reference of an item.)

HideDialogItem Hides the given item.
ShowDialogItem Re-displays a hidden item.
GetDialogItemText Returns the text of an edit or static text item.
SelectDialogItemText Selects the text of an edit text item. When embedding is on, you should pass in the control

reference produced by a call to GetDialogItemAsControl. When embedding is not on, you
should pass in the reference produced by a call to GetDialogItem.

FindDialogItem Determines the item number of an item at a particular location in a dialog.
MoveDialogItem Moves a dialog item to a specified location in a window. Ensures that, if the item is a

control, the control rectangle and the dialog item rectangle (maintained by the Dialog
Manager) are always the same.

SizeDialogItem Resizes a dialog item to a specified size. If the dialog item is a control, the control
rectangle and the dialog item rectangle (maintained by the Dialog Manager) are always the
same.

CountDITL Counts items in a dialog.
AppendDITL
AppendDialogItemList

Adds items to the end of the item list. (See Append Method Constants, below.)

ShortenDITL Removes items from the end of the item list.
InsertDialogItem Inserts an item into the item list.
RemoveDialogItem Removes an item from the item list.
ParamText Substitutes up to four different text strings in static text control items.

Dialogs and Alerts Version 1.0 8-15

Append Method Constants
The AppendDITL, AppendDialogItemList, and ShortenDITL functions are particularly useful in the situation where
more than one dialog shares the same 'DITL' resource and you want to tailor the 'DITL' for each dialog. When
calling AppendDITL or AppendDialogItemList, you specify a new 'DITL' resource to append to the relevant
dialog's existing 'DITL' resource. You also specify where the Dialog Manager should display the new items
by using one of the following constants in the AppendDITL or AppendDialogItemList call:

Constant Valu
e

Description

overlay 0 Overlay existing items. Coordinates of the display rectangle are interpreted as local
coordinates within the dialog.

AppendDITLRight 1 Append at right. Display rectangles are interpreted as relative to the upper-right
coordinate of the dialog.

appendDITLBottom 2 Append at bottom. Display rectangles are interpreted as relative to the lower-left
coordinate of the dialog.

As an alternative to passing these constants, you can append items relative to an existing item by passing a
negative number to AppendDITL or AppendDialogItemList. The absolute value of this number represents the
item relative to which the new items are to be positioned. For example, -3 would cause the display
rectangles of the appended items to be offset from the upper-left corner of item number 3 in the dialog.
To use, at a later time, the unmodified version of a dialog whose contents and (possibly) size have been
modified by AppendDITL or AppendDialogItemList, you should call ReleaseResource to release the memory
occupied by the appended item list.

Getting and Setting The Text in Edit Text
and Static Text Items

Dialog Manager functions for getting text from, and setting the text of, edit text and static text items are as
follows:

Function Description
GetDialogItemText Gets a copy of the text in static text and edit text items. Pass in the reference produced by a call

to GetDialogItem, which gets a handle the text in this instance, not a reference to the control.
SetDialogItemText Sets the text string for static text and edit text items. When embedding is on, you should pass in

the control reference produced by a call to GetDialogItemAsControl. If embedding is not on, pass in
the reference produced by GetDialogItem.

The function ParamText may also be used to set the text string in a static text item in a dialog. A common
example is the inclusion of the window title in static text such as "Save changes to the document ... before
closing?". In this case, the window's title could be retrieved using GetWTitle and inserted by ParamText at the
appropriate text replacement variable (^0, ^1, ^2 or ^3) specified in the static text item in the 'DITL'
resource.
Since there are four text replacement variables, ParamText can supply up to four text strings for a single
dialog.

Setting the Font For Controls in a Dialog — 'dftb' Resources
When an embedding hierarchy is established in a dialog, you can specify the initial font settings for all
controls in a dialog by creating a dialog font table resource (resource type 'dftb') with the same resource
ID as the alert or dialog's 'DITL' resource. When a 'dftb' resource is read in, the control font styles are set,
and the resource is marked purgeable.
The 'dftb' resource is the resource-based equivalent of the programmatic method of setting a control's font
using the function SetControlFontStyle described at Chapter 7.

Structure of a Compiled 'dftb' Resource
Fig 11 shows the structure of a compiled 'dftb' resource and of a constituent dialog font table entry.

8-16 Version 1.0 Dialogs and Alerts

FIG 11- STRUCTURE OF A COMPILED DIALOG FONT TABLE ('dftb') RESOURCE AND A DIALOG CONTROL FONT ENTRY

VERSION NUMBER

NUMBER OF ENTRIES

2

2

Variable

BYTES

2

2

2

1 to 256

2

BYTES

LAST DIALOG CONTROLFONT ENTRY

FIRST DIALOG CONTROL FONT ENTRY Variable

2

2

6

2

TYPE

DIALOG FONT FLAGS

FONT ID

FONT SIZE

FONT STYLE

TEXT MODE

JUSTIFICATION

TEXT COLOR

BACKGROUND COLOR

FONT NAME

6

STRUCTURE OF A COMPILED WINDOW ('dftb') RESOURCE DIALOG CONTROL FONT ENTRY

The following describes the main fields of the 'dftb' resource and the dialog control font entry:

Field Description
NUMBER OF ENTRIES Specifies the number of entries in the resource. Each entry is a dialog control font structure.
FIRST DIALOG
CONTROL FONT
ENTRY...
LASTDIALOG
CONTROL FONT
ENTRY

Dialog control font structures. Each comprises type, dialog font flags, font ID, font size, font style,
text mode, justification, text color, background color, and font name.

TYPE Specifies whether there is font information for the dialog or alert item in the 'DITL'. 0 means that
there is no font information for the item, that no data follows, and that the entry is to be skipped. 1
means that there is font information for the item, and that the rest of the structure is read.

DIALOG FONT FLAGS Specifies which of the following fields in the dialog font table should be used. (See Dialog Font
Flag Constants, below.)

FONT ID The ID of the font family to use. (See Meta Font Constants, below, for more information about the
constants that you can specify.) If this bit is set to 0, the system default font is used.

FONT SIZE If the kDialogFontUseSizeMask bit in the dialog font flags field is set, the point size of the text. If the
kDialogFontAddSizeMask bit is set, the size to add to the current point size of the text.
If a constant representing the system font, small system font, or small emphasized system font is
specified in the Font ID field, this field is ignored.

STYLE The text style (normal, bold, italic,underlined, outline, shadow, condensed, or extended.)
TEXT MODE Specifies how characters are drawn. (See Chapter 12 for a discussion of transfer modes.)
JUSTIFICATION Justification (left, right, centered, or system-justified).
TEXT COLOR Colour to use when drawing the text.
BACKGROUND
COLOR

Colour to use when drawing the background behind the text. In certain text modes, background
colour is ignored.

FONT NAME The font name. This overrides the font ID.

Dialog Font Flag Constants
You can set the following bits in the dialog font flags field of a dialog control font entry to specify the
fields in the entry that should be used

Constant Value Meaning
kDialogFontNoFontStyle 0x0000 No font style information is applied.
kDialogFontUseFontMask 0x0001 The specified font ID is applied.
kDialogFontUseFaceMask 0x0002 The specified font style is applied.

Dialogs and Alerts Version 1.0 8-17

kDialogFontUseSizeMask 0x0004 The specified font size is applied.
kDialogFontUseForeColorMask 0x0008 The specified text color is applied. This flag only applies to static text

controls.
kDialogFontUseBackColorMask 0x0010 The specified background color is applied. This flag only applies to

static text controls.
kDialogFontUseModeMask 0x0020 The specified text mode is applied.
kDialogFontUseJustMask 0x0040 The specified text justification is applied.
kDialogFontUseAllMask 0x00FF All flags in this mask will be set except kDialogFontAddFontSizeMask

and kDialogFontUseFontNameMask.
kDialogFontAddFontSizeMask 0x0100 The specified font size will be added to the existing font size

specified in the Font Size field of the dialog font table resource.
kDialogFontUseFontNameMask 0x0200 The string in the Font Name field will be used for the font name

instead of the specified font ID.

Meta Font Constants
You can use the following meta font constants in the font ID field of a dialog control font entry to specify
the style, size, and font family of a control's font. You should use these meta font constants whenever
possible because, on Mac OS 8/9, the system font can be changed by the user. If none of these constants
are specified, the control uses the system font unless a control with a variant that uses the window font has
been specified.

Constant Value Meaning In Roman Script System
kControlFontBigSystemFont -1 Use the system font.
kControlFontSmallSystemFont -2 Use the small system font.
kControlFontSmallBoldSystemFont -3 Use the small bold system font.
kControlFontSmallBoldSystemFont -4 Use the small emphasized system font.

Another advantage of using these meta font constants is that you can be sure of getting the correct font on a
Macintosh using a different script system, such as kanji.

Creating a 'dftb' Resource Using
Resorcerer

Fig 12 shows a dialog control font entry in a 'dftb' resource being edited with Resorcerer.

8-18 Version 1.0 Dialogs and Alerts

FIG 12 - CREATING A 'dftb' RESOURCE USING RESORCERER

In this example, Helvetica 10 pt font has been
specified. However, meta fonts constants
could have been specified at this pop-up

kDialogFontUseJustMask bit is set, meaning
that the text justification specified at
Justification is applied.

TYPE

DIALOG FONT FLAGS

FONT ID

FONT SIZE

FONT STYLE

TEXT MODE

JUSTIFICATION

TEXT COLOR

BACKGROUND COLOR

FONT NAME

COMPILED DIALOG CONTROLFONT ENTRY

For item 6, 0 has been specified as the type,
meaning that no data follows. This causes
the entry to be skipped.
For item 7, 1 has been specified as the type,
meaning that data follows.

For an explanation of r,g,b colour, see
Chapter 11 — QuickDraw Preliminaries

kDialogFontUseFontMask bit set, meaning that
the font ID specified at Font name is applied.

kDialogFontUseForeColorMask bit is set,
meaning that the text colour specified at
Foreground color field is applied.

Displaying Alerts and Dialogs
As previously stated:

 StandardAlert, CreateStandardAlert and RunStandardAlert are used to create and display alerts.

 GetNewDialog is used to create dialogs using descriptive information supplied by 'DLOG' and 'dlgx'
resources, and NewFeaturesDialog is used to create dialogs programmatically. Both creation methods
allow you to specify whether the dialog is to be initially visible, and both allow you to specify
whether or not the dialog is to be brought to the front of all other windows when it is opened.

To display a dialog which is specified to be invisible on creation, you must call ShowWindow following the
GetNewDialog or NewFeaturesDialog call to display the dialog. In addition, you should invariably pass
(WindowRef) -1 in the behind and inBehind and parameters of, respectively, GetNewDialog and NewFeaturesDialog
call so as to display a dialog as the active (frontmost) window.

Dialogs and Alerts Version 1.0 8-19

Window Deactivation and Menu Adjustment
When an alert or dialog is displayed:

 The frontmost window (assuming one exists) must be deactivated.

 The application's menus must be adjusted to reflect the differing levels of permitted menu access
which apply in the presence of the various types of alert and dialog. (As will be seen, the system
software automatically performs some of this menu adjustment for you.)

Note
Prior to the introduction of Mac OS 8 and the Appearance Manager, window deactivation when a movable modal
dialog was displayed was handled in the same way as applies in the case of a modeless dialog, that is, within the
application's main event loop. However, with the introduction of the Appearance Manager, when the
kDialogFlagsHandleMovableModal bit is set in the 'dlgx' resource, or in the inFlags parameter of NewFeaturesDialog,
ModalDialog is used to handle all user interaction within the dialog. (Previously, this user interaction was handled
within the main event loop.) This has implications for the way your application deactivates the front window
when a movable modal dialog is displayed.

Prior to the introduction of Mac OS 8 and the Appearance Manager, menu adjustment when a movable modal
dialog was displayed was performed by the application. However, when a movable modal dialog is created by
setting the kDialogFlagsHandleMovableModal bit in the 'dlgx' resource, or in the inFlags parameter of
NewFeaturesDialog, menu adjusment is performed by the Dialog Manager and Menu Manager.

All that follows assumes that the kDialogFlagsHandleMovableModal bit is set in the 'dlgx' resource, or in the inFlags
parameter of NewFeaturesDialog, and that, as a consequence:

• Your application calls ModalDialog to handle all user interaction within movable modal dialogs (as is the case
with modal dialogs).

• Menu adjustment will be performed automatically by the Dialog Manager and Menu Manager when a
movable modal dialog is displayed (as is the case with modal dialogs).

Window Deactivation — Modeless
Dialogs

You do not have to deactivate the front window explicitly when displaying a modeless dialog. The Event
Manager continues sending your application activate events for your windows as needed, which you
typically handle in your main event loop.

Window Deactivation — Modal and
Movable Modal Alerts and Dialogs

When a modal or movable modal alert or dialog is created and displayed, your application (in the case of
dialogs) or StandardAlert and RunStandardAlert (in the case of alerts) calls ModalDialog to handle all user
interaction within the alert or dialog until the alert or dialog is dismissed. Events, which are ordinarily
handled within your application's main event loop, will then be trapped and handled by ModalDialog. This
means that your window activation/deactivation function will not now be called as it normally would
following the opening of a new window. Accordingly, if one of your application's windows is active, you
must explicitly deactivate it before displaying a modal or movable modal alert or dialog.

Menu Adjustment — Modeless Dialogs
When your application displays a modeless dialog, it is responsible for all menu disabling and enabling.
Your application should thus perform the following tasks:

 Disable those menus whose items are not relevant to the modeless dialog.

 For modeless dialogs that contain edit text controls, enable the Edit menu and support the Cut, Copy,
Paste, and Clear items using the Dialog Manager functions DialogCut, DialogCopy, DialogPaste and
DialogDelete.

Your application is also responsible for all menu enabling when a modeless dialog is dismissed.

8-20 Version 1.0 Dialogs and Alerts

Menu Adjustment — Modal Alerts and
Dialogs

When your application displays a modal alert or dialog, the Dialog Manager and Menu Manager interact to
provide varying degrees of access to the menus in your menu bar, as follows:

 On Mac OS 8/9, the Mac OS 8/9 Application menu, and all items in the Help menu except the Show
Balloons/Hide Balloons item are disabled. On Mac OS X, all but the Apple and Application menus
are disabled.

 Your application's menus are disabled.

 If the modal dialog contains a visible and active edit text item, the Edit menu and its Cut, Copy and
Paste items are enabled.

When the user dismisses the modal alert or dialog, the Menu Manager restores all menus to their previous
state.

Menu Adjustment — Movable Modal
Alerts and Dialogs

When your application displays a movable modal alert or dialog, the Dialog Manager and Menu Manager
interact to provide the same access to the menus in your menu bar as applies in the case of modal alerts and
dialogs except that, in this case, on Mac OS 8/9, the Help and Mac OS 8/9 Application menus are left
enabled.
When the user dismisses the movable modal alert or dialog, the Menu Manager restores all menus to their
previous state.

Displaying Multiple Alerts and Dialogs
The user should never see more than one modal dialog and one modal alert on the screen simultaneously.
However, you can present multiple simultaneous modeless dialogs just as you can present multiple
document windows.

Resizing a Dialog
You can use the function AutoSizeDialog to automatically resize static text items and their dialogs to
accommodate changed static text. For each static text item found, AutoSizeDialog adjusts the static text
control and the bottom of the dialog window. Any items below a static text control are moved down.

Handling Events in Alerts and Dialogs

Overview
Modal and Movable Modal Alerts and
Dialogs

When StandardAlert, CreateStandardAlert, and RunStandardAlert are used to create and display alerts, the Dialog
Manager handles all of the events generated by the user until the user clicks a push button. When the user
clicks a push button, these functions highlight the push button briefly, close the alert and report the user's
selection to the application.
As previously stated, ModalDialog handles all user interaction within modal and movable modal dialogs.
When the user selects an enabled item, ModalDialog reports that the user selected the item and then exits.
Your application is then responsible for performing the appropriate action in relation to that item. Your
application typically calls ModalDialog repeatedly until the user dismisses the dialog.
The filterProc field of the standard alert structure associated with the StandardAlert function, the filterProc
parameter of the RunStandardAlert function, and the modalFilter parameter of the ModalDialog function take a
universal procedure pointer to a callback function known as an event filter function. The Dialog Manager

Dialogs and Alerts Version 1.0 8-21

provides a standard event filter function, which is used if NULL is passed in the filterProc or modalFilter
parameters or assigned to the filterProc field; however, you should supply an application-defined event filter
(callback) function for modal and movable modal alerts and dialogs so as to avoid a basic limitation of the
standard event filter (callback) function. (See Event Filter (Callback) Functions For Modal and Movable
Modal Alerts and Dialogs, below.)

Modeless Dialogs
For modeless dialogs, you can use the function IsDialogEvent to determine whether the event occurred while
a modeless dialog was the frontmost window and then, optionally, use the function DialogSelect to handle
the event if it belongs to a modeless dialog. DialogSelect is similar to ModalDialog except that it returns
control after every event, not just events relating to an enabled item. Also, DialogSelect does not pass events
to an event filter (callback) function.

Responding to Events in Controls
Controls and Control Values

For clicks in those types of controls for which you need to determine or change the control's value, your
application should use the Control Manager functions GetControlValue and SetControlValue to get and set the
value. When the user clicks on the OK push button, your application should perform whatever action is
necessary to reflect to the values returned by the controls.

Controls That Accept Keyboard Input
Edit text controls and clock controls, which both accept keyboard input, are typically disabled because you
generally do not need to be informed every time the user clicks on one of them or types a character.
Instead, you simply need to retrieve the text in the edit text control, or the clock's date/time value, when the
user clicks the OK push button.
When you use ModalDialog (key-down events in edit text controls and clock controls in modal or movable
modal dialogs) or DialogSelect (key-down events in edit text controls and clock controls in modeless
dialogs), keystrokes and mouse actions within those controls are handled automatically. In the case of an
edit text control, this means that:

 A blinking vertical bar, called the insertion point caret, appears when the user clicks the item.

 When the user drags over text or double-clicks a word, that text is highlighted and replaced by
whatever the user types.

 Highlighting of text is extended or shortened when the user holds down the Shift key while clicking
or dragging.

 Highlighted text, or the character preceding the insertion point caret, is deleted when the user
presses the backspace key.

 Highlighted text, or the character following the insertion point caret, is deleted when the user
presses the delete key.

 When the user presses the Tab key, the cursor and keyboard focus frame automatically advance to
the next edit text control, clock control, or list box (if any) in the item list, wrapping around to the
first one if there are no more items.

Caret Blinking in Edit Text Controls
ModalDialog will cause the insertion point caret to blink in edit text controls in modal and movable modal
dialogs. On Mac OS 8/9, for edit text controls in a modeless dialog, you should call IdleControls in your
main event loop's idle processing function. (This is not necessary on Mac OS X because controls on Mac
OS X have their own built-in timers.) IdleControls calls the edit text control with an idle event so that the
control can call TEIdle to make the insertion point caret blink. You should ensure that, when caret blinking
is required, the sleep parameter in the WaitNextEvent call is set to a value no greater that that returned by
GetCaretTime.

8-22 Version 1.0 Dialogs and Alerts

Responding to Events in Modal and Movable Modal Alerts
StandardAlert and RunStandardAlert handle events automatically, calling ModalDialog internally.
If the event is a mouse-down anywhere outside the content region of a modal alert, ModalDialog emits the
system alert sound and gets the next event.
If the event is a mouse-down outside the content region of a movable modal alert and within a window
belonging to the application, ModalDialog emits the system alert sound and gets the next event. If the mouse-
down is not within the content region or a window belonging to the application, ModalDialog performs alert
dragging (if the mouse-down is within the title bar) or sends the application to the background (if the
mouse-down is not within the title bar).
ModalDialog is continually called until the user clicks an enabled control, at which time StandardAlert and
RunStandardAlert remove the alert from the screen and return the item number of the selected control. Your
application then should then respond appropriately.
The standard event filter (callback) function allows users to use the Return or Enter key to achieve the
same effect as a click on the default push button. When you write your own event filter (callback)
function, you should ensure that that function retains this behaviour. ModalDialog passes events inside the
alert to your event filter (callback) function before handling the event. Your event filter (callback) function
thus provides a means to:

 Handle events which ModalDialog does not handle.

 Override events ModalDialog would otherwise handle.

If your event filter (callback) function does not handle an event inside an alert in its own way, ModalDialog
handles the event as follows:

 For activate or update events, ModalDialog activates or updates the alert window.

 For mouse-down events in a trackable control, TrackControl is called to track the mouse. If the user
releases the mouse button while the cursor is still in the control, the alert is removed and the
control's item number is returned.

 For a mouse-down event in a disabled item, or in no item, or if any other event occurs, nothing
happens.

Responding To Events in Modal and Movable Modal Dialogs
Your application should call ModalDialog immediately after displaying a modal or movable modal dialog.
ModalDialog repeatedly handles events inside the dialog until an event involving an enabled item occurs, at
which time ModalDialog exits, returning the item number. Your application should then respond
appropriately. ModalDialog should be continually called until the user clicks on the OK, Cancel, or Don't
Save push button, at which time your application should close the dialog.
If the event is a mouse-down anywhere outside the content region of a modal dialog, ModalDialog emits the
system alert sound and gets the next event.
If the event is a mouse-down outside the content region of a movable modal dialog and within a window
belonging to the application, ModalDialog emits the system alert sound and gets the next event. If the mouse
down is not within the content region or a window belonging to the application, ModalDialog performs dialog
dragging (if the mouse-down is within the title bar) or sends the application to the background (if the
mouse-down is not within the title bar).
If your event filter (callback) function does not handle the event, ModalDialog handles the event as follows:

 For activate or update events, ModalDialog activates or updates the dialog window.

 If the event is a mouse-down while the cursor is in a control that accepts keyboard input (that is, an
edit text control or a clock control), ModalDialog responds to the mouse activity by either displaying
an insertion point or by selecting text in an edit text control or by highlighting the appropriate part of
the clock control. Where there is more than one control that accepts keyboard input, ModalDialog

Dialogs and Alerts Version 1.0 8-23

moves the keyboard focus to that control. If a key-down event occurs and there is an edit text
control in the dialog, ModalDialog uses TextEdit to handle text entry and editing automatically. For an
enabled edit text control, ModalDialog returns its item number after it receives either the mouse-down
or key-down event. (Normally, edit text controls should be disabled.)

 For mouse-down events in a trackable control, TrackControl is called to track the mouse. If the user
releases the mouse button while the cursor is still in the control, the control's item number is
returned.

 If the event is a Tab key key-down event and there is more than one control that accepts keyboard
input, ModalDialog moves the keyboard focus to the next such item in the item list.

 For a mouse-down event in a disabled item, or in no item, or if any other event occurs, nothing
happens.

Specifying the Events To Be Received
by ModalDialog

The function SetModalDialogEventMask may be used to specify the events to be received by the ModalDialog
function for a given modal or movable modal dialog. This allows your application to specify additional
events that are not by default received by ModalDialog, such as operating system events. If you us this
function to change the ModalDialog function's event mask, you must pass ModalDialog a universal procedure
pointer to your own event filter (callback) function to handle the added events.
You can ascertain the events to be received by ModalDialog by calling GetModalDialogEventMask.

Simulating Item Selection
You can cause the Dialog Manager to simulate item selection in a modal or movable modal dialog using
the function SetDialogTimeout. You can use this function in circumstances where you wish to start a
countdown for a specified duration for a specified dialog. When the specified time elapses, the Dialog
Manager simulates a click on the specified button. The Dialog Manager will not simulate item selection
until ModalDialog processes an event.
You can ascertain the original countdown duration, the time remaining, and the item selection to be
simulated by calling GetDialogTimeout.

Event Filter (Callback) Functions For Modal and Movable Modal
Alerts and Dialogs

The standard event filter (callback) function dates from the early days of the Macintosh, when a single
application controlled the computer. With the introduction of multitasking, however, the standard event
filter proved to be somewhat inadequate, its main deficiency being that it does not cater for the updating of
either the parent application's windows or those belonging to background applications. (This deficiency is
only relevant on Mac OS 8/9.) Your application should therefore provide an application-defined event
filter (callback) function which compensates for this inadequacy and handles other events you wish the
function to handle.
The standard event filter (callback) function performs the following checks and actions:

 Checks whether the user has pressed the Return or Enter key and, if so, highlights the default push
button for eight ticks (Mac OS 8/9 only) and returns the item number of that push button. (Unless
informed otherwise, the Dialog Manager assumes that the first item in the item list is the default
push button.)

 For dialogs only, and only if the application has previously called certain Dialog Manager functions
(see below):

 Checks whether the user has pressed the Escape key or Command-period and, if so, highlights
the Cancel push button for eight ticks (Mac OS 8/9 only) and returns the item number of that
button.

8-24 Version 1.0 Dialogs and Alerts

 Check whether the cursor is over an edit text item and, if so, changes the cursor shape to the I-
Beam cursor.

As a minimum, your application-defined event filter (callback) function should ensure that these checks
and actions are performed and should also:

 For Mac OS 8/9 only, handle update events not belonging to the alert or dialog so as to allow the
application to update its own windows, and return false. (Note that, by responding to update events
in the application's own windows in this way, you also allow ModalDialog to perform a minor switch
when necessary so that background applications can update their windows as well.)

 Return false for all events that your event filter (callback) function does not handle.

Defining an Event Filter (Callback)
Function

Part of the recommended approach to defining a basic event filter (callback) function is to continue to use
the standard event filter (callback) function to perform its checks and actions as described above. This
requires certain preliminary action which, for dialogs, requires calls similar to the following examples after
the dialog is created and before the call to ModalDialog:

// Tell the Dialog Manager which is the default push button item, alias the Return and
// Enter keys to that item, and draw the default ring around that item (Mac OS 8/9) or
// make it pulsing blue (Mac OS X).

SetDialogDefaultItem(myDialogRef,iOK);

// Tell the Dialog Manager which is the Cancel push button item, and alias the escape
// key and Command-period key presses to that item.

SetDialogCancelItem(myDialogRef,iCancel);

// Tell the Dialog Manager to track the cursor and change it to the I-Beam cursor shape
// whenever it is over an edit text item.

SetDialogTracksCursor(myDialogRef,true);

Note that, for all this to work, it is essential that the default and Cancel push buttons, and edit text items, be
specified as primitives, not as actual controls, in the 'DLOG' resource.
With those preparations made, you would define your basic event filter (callback) function as in the
following example:

Boolean myEventFilterFunction(DialogRef dialogRef,EventRecord *eventStrucPtr,
 SInt16 *itemHit)
{
 Boolean handledEvent;
 GrafPtr oldPort;

 handledEvent = false;

 if((eventStrucPtr->what == updateEvt) &&
 ((WindowRef) eventStrucPtr->message != dialogRef))
 {
 // If the event is an update event, and if it is not for the dialog or alert, call
 // your application's window updating function, and return false.

 if(!gRunningOnX)
 doUpdate(eventStrucPtr);
 }
 else
 {
 // If the event was not an update, first save the current graphics port and set the
 // alert or dialog's graphics port as the current graphics port. This is
 // necessary when you have called SetDialogTrackCursor to cause the Dialog Manager
 // to track cursor position.

 GetPort(&oldPort);
 SetPortDialogPort(dialogRef);

 // Pass the event to the standard event filter function for handling. If the
 // function handles the event, it will return true and, in the itemHit parameter,
 // the number of the item that it handled. ModalDialog, StandardAlert, and

Dialogs and Alerts Version 1.0 8-25

 // RunStandardAlert then return this item number in their own itemHit parameter.

 handledEvent = StdFilterProc(dialogRef,eventStrucPtr,itemHit);

 // Make the saved graphics port the current graphics port again.

 SetPort(oldPort);
 }

 // Return true or false, as appropriate.

 return(handledEvent);
}

StandardAlert, RunStandardAlert, and ModalDialog pass events to your event filter (callback) function before
handling each event3, and will handle the event if your event filter (callback) function returns false.
You can also use your event filter (callback) function to handle events that ModalDialog does not handle,
such as keyboard equivalents and mouse-down events.

Responding to Events in Modeless Dialogs
As previously stated, you can use the function IsDialogEvent to determine whether an event occurred in a
modeless dialog or a document window and then call DialogSelect to handle the event if it occurred in a
modeless dialog. DialogSelect handles the event as follows:

 For activate or update events, DialogSelect activates or updates the modeless dialog and returns false.

 If the event is a key-down or auto-key event, and there is an edit text item in the modeless dialog,
DialogSelect uses TextEdit to handle text entry and editing and returns true and the item number. If
there is no edit-text item, DialogSelect returns false.

 For mouse-downs in an edit text item, DialogSelect displays the insertion point caret or selects text as
appropriate. DialogSelect returns false if the edit text item is disabled, and true and the item number if
it is enabled. (Normally, edit text items should be disabled.)

 For mouse-downs in an enabled trackable control, DialogSelect calls TrackControl and, if the user
releases the mouse button while the cursor is still within the control, returns true and the item
number.

 For mouse-downs on a disabled item, or in no item, or if any other event occurs, DialogSelect does
nothing.

In the case of a key-down or auto-key event in an edit text item, you will ordinarily need to filter out
Return and Enter key presses and certain Command-key equivalents so that they are not passed to
DialogSelect. In the case of Return and Enter key presses, you should also highlight the associated push
button for eight ticks (for Mac OS 8/9) before calling the function which responds to hits on the OK button.
In the case of Command-key presses, you should only allow Command-X, Command-C, and Command-V
to be passed to DialogSelect (so that DialogSelect can support cut, copy, and paste actions within the edit text
control) and pass any other Command-key equivalents to your application's menu handling function.

Closing and Disposing of Dialogs
CloseDialog closes the dialog's window and removes it from the screen, and frees up the memory occupied
by most types of items in the item list and related data structures. It does not release the memory occupied
by the dialog object or item list.
DisposeDialog closes the dialog's window and deletes it from the window list, and releases the memory
occupied by the dialog object, item list, and most types of items. (Handles leading to icons and pictures are
not released.)
3 A major difference between modal alerts and dialogs and movable modal alerts and dialogs is that, in the case of the latter,
all events are passed to your event filter function for handling. This allows you to, for example, handle suspend and resume
events when your application is either moved to the background or brought to the front, as well as other events you might want
to handle.

8-26 Version 1.0 Dialogs and Alerts

For modeless dialogs, you might find it more efficient to hide the dialog with HideWindow rather than
dispose of the dialog. In that way, the dialog will remain available, and in the same location and with the
same settings as when it was last used.

Creating Displaying and Handling Window-Modal
(Sheet) Alerts and Dialogs

Window-Modal (Sheet) Alerts
Window-modal (sheet) alerts are created using the function CreateStandardSheet:

OSStatus CreateStandardSheet(AlertType alertType,CFStringRef error,
 CFStringRef explanation,
 const AlertStdCFStringAlertParamRec *param,
 EventTargetRef notifyTarget, DialogRef *outSheet);

alertType The level of the alert. Relevant constants are:
kAlertStopAlert
kAlertNoteAlert
kAlertCautionAlert
kAlertPlainAlert

error The message text.
explanation The informative text.
param A pointer to a standard CFString alert parameter structure (see above). NULL

indicates that none of the features provided by the standard alert structure are required.
notifyTarget The event target to be notified when the sheet is closed.
outSheet On return, the sheet's dialog reference.

The sheet will be invisible when created. A call to ShowSheetWindow displays the sheet.
If the sheet has more than one button, your application will need to determine which button was hit by the
user. This requires the use of the Carbon event model (see Chapter 17) and the installation of an event
handler on the event target. The event target is ordinarily the owner window, in which case you pass a
reference to that window in a call to GetWindowEventTarget and pass the returned event target reference in the
notifyTarget parameter of CreateStandardSheet. The Carbon event handler you install should respond to the
kEventProcessCommand Carbon event type and should test for the command IDs kHICommandOK,
kHICommandCancel, and kHICommandOther in order to determine which button was hit.
If the sheet has only one button (an OK button), you can simply pass the returned event target reference in
the notifyTarget parameter (so that the CreateStandardSheet call will not fail) and not install a handler. The
sheet will be dismissed when the button is hit.

Window-Modal (Sheet) Dialogs
Window-modal (sheet) dialogs, like other dialogs, may be created using GetNewDialog or NewFeaturesDialog.
The window definition ID should be kWindowSheetProc (1088) and the dialog should be created invisible.
A call to ShowSheetWindow displays the sheet. Your application should ensure that only one sheet is
displayed in a window at one time.
Events in window-modal (sheet) dialogs may be handled in the same way as for modeless dialogs.

Balloon Help For Dialogs — Mac OS 8/9
Two basic options are available for adding help balloons to dialogs for Mac OS 8/9:

 Adding a balloon help item to the item list ('DITL') resource, which will associate either a rectangle
help ('hrct') resource or a dialog help ('hdlg') resource with that 'DITL' resource. Each hot rectangle

Dialogs and Alerts Version 1.0 8-27

component in the 'hrct' resource, and each dialog item component in the 'hdlg' resource, corresponds
to an item number in the 'DITL' resource.

 Supplying a window help ('hwin') resource, which will associate help balloons defined in either 'hrct'
resources or 'hdlg' resources with the dialog's window. 4

The option of using a balloon help item (usually referred to as simply a "help item") overcomes the major
limitation of the 'hwin' resource methodology, which is the inability to adequately differentiate between
dialogs with no titles (see Chaper 4 — Windows, Fig 14). On the other hand, adopting the help item
methodology means that you can only associate help balloons with items in the 'DITL' resource; you cannot
provide a single help balloon for a group of related items (unless, of course, they are grouped within a
primary or secondary group box).
Help items are invisible. In Resorcerer, the presence of a balloon help item in a 'DITL' resource is indicated
only by a checkmark in the Balloon Help… item in the Item menu. A help item's presence in the 'DITL'
resource is completely ignored by the Dialog Manager.
When the help item methodolgy is used, the Help Manager automatically tracks the cursor and displays
help balloons when the following conditions are met: the dialog has a help item in its 'DITL' resource; your
application calls the Dialog Manager functions ModalDialog, or IsDialogEvent,; balloon help is enabled.
Figs 13 and 14 at Chapter 4 show 'hrct' and 'hwin' resources being created using Resorcerer. Figs 13 and 14
below show a help item and a 'hdlg' (dialog help) resource being created using Resorcerer.

FIG 13 - CREATING A HELP ITEM USING RESORCERER

This help item associates the 'hdlg' resource with ID
130 with the 'DITL' in which the help item resides.

The resource type and
resource ID of the
resource supplying the
help balloons are chosen
and entered here.

When “Append ‘hdlg’” is chosen, an additional piece of information
is needed, namely, the item number offset. This is useful for
stand-alone item lists that are meant to be appended to other item
lists at run-time. The most common time this happens is in the Print
dialog. Choose Append help item or Insert item after: (item
number) here.

RESORCERER HELP ITEM EDITING WINDOW

4 'hrct' and 'hwin' resources are described at Chapter 4.

8-28 Version 1.0 Dialogs and Alerts

FIG 14 - CREATING A 'hdlg' RESOURCE USING RESORCERER

Header component

The structure of the hot rectangle component depends
on the item chosen in the Message Type pop-up menu
in the Resorcerer editing window below, which sets the
TYPE OF DATA field. The pop-up menu items
specify the format of the help balloon messages. The
available formats are as follows:

Use the string specified within this component of this 'hrct' resource. (Specified in this example.)
Use the picture stored in the specified 'PICT' resource.
Use the specified text string stored in the specified 'STR#' resource.
Use the styled text stored in the specified 'TEXT' and 'styl' resources.
Use the text string stored in the specified 'STR ' resource.
No help message. Skip this item.

Use these strings
Use 'PICT' resources
Use 'STR#' resources
Used styled text resources
Use 'STR ' resources
Skip missing item

FIRST DIALOG ITEM COMPONENT

HELP MANAGER VERSION

OPTIONS

BALLOON DEFINITION FUNCTION

VARIATION CODE

MISSING ITEMS COMPONENT

LAST DIALOG ITEM COMPONENT

ITEM COUNT

STRUCTURE OF A COMPILED 'hdlg' RESOURCE

RESORCERER 'hdlg' RESOURCE EDITING WINDOW

Help Manager version

Resource ID of the window definition function (WDEF) used for drawing help balloons.
The standard WDEF's resource ID is 126. This can be specified by 0 in Resorcerer.
Variation code for WDEF. Governs the location of the balloon's tip.
The number of remaining components defined in the rest of the resource.

A number of options. 1 and 4, below, are not relevant to 'hdlg' resources. (2 and 3,
below, relate to the three ways that the Help Manager draws and removes balloons.)

Specifies how the Help Manager is to handle items that are not described in this
resource. (In the Resorcerer window below, this component has been skipped.)

...

INDEX
An index into the 'DITL' resource. (See Append 'hdlg' , Append help item, and
Insert item after:, at Fig 13.)

The missing items component may be used for
purposes similar to the missing item component in
'hmnu' resources. See Fig 13 at Chapter 3 — Menus.

SIZE
TYPE OF DATA

TIP'S COORDINATES

ALTERNATE RECTANGLE

TEXT STRING

ALIGNMENT BYTES

TEXT STRING

TEXT STRING

TEXT STRING

STRUCTURE OF DIALOG ITEM COMPONENT

Message for item
when checked

Coordinates of
balloon's tip
Coordinates of
alt rectangle
Message for
enabled item

Other
message

Pascal string in
this component

Message fo
disabled item

This field is misnamed in Resorcerer. The Help Manager uses an item's display rectangle as the hot
rectangle for help balloons. The optional alternate rectangle specified here is used by the Help Manager to
transpose the tip if the help balloon does not fit the screen. If the alternate is smaller than the hot, you have
greater assurance of the balloon fitting onscreen. If the alternate is larger than the hot, you have greater
assurance that the balloon will not obscure some important portion within the hot (display) rectangle.

Dialogs and Alerts Version 1.0 8-29

Help Tags For Dialogs — Mac OS X
Balloon help is not available on Mac OS X. On Mac OS X, you should use help tags instead. Help tag
creation is addressed at Chapter 25.

8-30 Version 1.0 Dialogs and Alerts

Main Dialog Manager Constants, Data Types and
Functions

Constants
Dialog Item Types
kControlDialogItem = 4
kButtonDialogItem = kControlDialogItem | 0
kCheckBoxDialogItem = kControlDialogItem | 1
kRadioButtonDialogItem = kControlDialogItem | 2
kResourceControlDialogItem = kControlDialogItem | 3
kStaticTextDialogItem = 8
kEditTextDialogItem = 16
kIconDialogItem = 32
kPictureDialogItem = 64
kUserDialogItem = 0
kItemDisableBit = 128

Standard Item Numbers for OK and Cancel Push Buttons
KStdOKItemIndex = 1
KStdCancelItemIndex = 2

Resource IDs of Alert Icons
kStopIcon = 0
kNoteIcon = 1
kCautionIcon = 2

Dialog Item List Manipulation
overlayDITL = 0
appendDITLRight = 1
appendDITLBottom = 2

Alert Types
kAlertStopAlert = 0
kAlertNoteAlert = 1
kAlertCautionAlert = 2
kAlertPlainAlert = 3

Standard Alert Push Button Numbers
kAlertStdAlertOKButton = 1
kAlertStdAlertCancelButton = 2
kAlertStdAlertOtherButton = 3
kAlertStdAlertHelpButton = 4

Alert Default Text
kAlertDefaultOKText = -1
kAlertDefaultCancelText = -1
kAlertDefaultOtherText = -1

Dialog Feature Flags
kDialogFlagsUseThemeBackground = (1 << 0)
kDialogFlagsUseControlHierarchy = (1 << 1)
kDialogFlagsHandleMovableModal = (1 << 2)
kDialogFlagsUseThemeControls = (1 << 3)

Dialog Font Flags
kDialogFontNoFontStyle = 0
kDialogFontUseFontMask = 0x0001
kDialogFontUseFaceMask = 0x0002
kDialogFontUseSizeMask = 0x0004
kDialogFontUseForeColorMask = 0x0008
kDialogFontUseBackColorMask = 0x0010
kDialogFontUseModeMask = 0x0020
kDialogFontUseJustMask = 0x0040
kDialogFontUseAllMask = 0x00FF
kDialogFontAddFontSizeMask = 0x0100
kDialogFontUseFontNameMask = 0x0200

Dialogs and Alerts Version 1.0 8-31

Constants Used for in NewFeaturesDialog inProcID Parameter
kWindowDocumentProc = 1024 Modeless dialog
kWindowPlainDialogProc = 1040 Modal dialog
kWindowShadowDialogProc = 1041 Modal dialog
kWindowModalDialogProc = 1042 Modal dialog
kWindowMovableModalDialogProc = 1043 Movable modal dialog
kWindowAlertProc = 1044 Modal alert
kWindowMovableAlertProc = 1045 Movable modal alert

Data Types
typedef struct OpaqueDialogPtr *DialogPtr;
typedef DialogPtr DialogRef;

Standard Alert Parameter Structure
struct AlertStdAlertParamRec
{
 Boolean movable;
 Boolean helpButton;
 ModalFilterUPP filterProc;
 ConstStringPtr defaultText;
 ConstStringPtr cancelText;
 ConstStringPtr otherText;
 SInt16 defaultButton;
 SInt16 cancelButton;
 UInt16 position;
};
typedef struct AlertStdAlertParamRec AlertStdAlertParamRec;
typedef AlertStdAlertParamRec *AlertStdAlertParamPtr;

Standard CFStringAlert Alert Paramater Structure
struct AlertStdCFStringAlertParamRec
{
 UInt32 version;
 Boolean movable;
 Boolean helpButton;
 CFStringRef defaultText;
 CFStringRef cancelText;
 CFStringRef otherText;
 SInt16 defaultButton;
 SInt16 cancelButton;
 UInt16 position;
 OptionBits flags;
};
typedef struct AlertStdCFStringAlertParamRec AlertStdCFStringAlertParamRec;
typedef AlertStdCFStringAlertParamRec *AlertStdCFStringAlertParamPtr;

Functions
Creating Alerts
OSErr StandardAlert(AlertType inAlertType, ConstStr255Param inError,
 ConstStr255Param inExplanation,const AlertStdAlertParamPtr inAlertParam,
 SInt16 *outItemHit);
OSStatus CreateStandardAlert(AlertType alertType,CFStringRef error,CFStringRef explanation,
 const AlertStdCFStringAlertParamRec *param,DialogRef outAlert);
OSStatus RunStandardAlert(DialogRef inAlert,ModalFilterUPP filterProc,
 DialogItemIndex *outItemHit);
OSStatus GetStandardAlertDefaultParams(AlertStdCFStringAlertParamPtr param,UInt32 version);

Creating, Closing, and Disposing of Dialogs
DialogRef GetNewDialog(short dialogID,void *dStorage,WindowRef behind);
DialogRef NewFeaturesDialog(void *inStorage, const Rect *inBoundsRect,
 ConstStr255Param inTitle, Boolean inIsVisible,SInt16 inProcID,WindowRef inBehind,
 Boolean inGoAwayFlag,SInt32 inRefCon,Handle inItemListHandle,UInt32 inFlags);
OSErr AutoSizeDialog(DialogRef inDialog);
void CloseDialog(DialogRef theDialog);
void DisposeDialog(DialogRef theDialog);

Creating Sheets (Mac OS X Only)
OSStatus CreateStandardSheet(AlertType alertType,CFStringRef error,CFStringRef explanation,
 const AlertStdCFStringAlertParamRec *param,EventTargetRef notifyTarget,
 DialogRef *outSheet);

8-32 Version 1.0 Dialogs and Alerts

Dialog Object Accessor Functions
WindowRef GetDialogWindow(DialogRef dialog);
TEHandle GetDialogTextEditHandle(DialogRef dialog);
SInt16 GetDialogKeyboardFocusItem(DialogRef dialog);
SInt16 GetDialogDefaultItem(DialogRef dialog);
OSErr SetDialogDefaultItem(DialogRef theDialog,DialogItemIndex newItem);
SInt16 GetDialogCancelItem(DialogRef dialog);
OSErr SetDialogCancelItem(DialogRef theDialog,DialogItemIndex newItem);

Utility and Casting Functions
void SetPortDialogPort(DialogRef dialog);
CGrafPtr GetDialogPort(DialogRef dialog);
DialogRef GetDialogFromWindow(WindowRef window);

Manipulating Items in Alerts and Dialogs
void GetDialogItem(DialogRef theDialog,short itemNo,short *itemType,Handle *item,
 Rect *box);
void SetDialogItem(DialogRef theDialog,short itemNo,short itemType,Handle item,
 const Rect *box);
OSErr GetDialogItemAsControl(DialogRef inDialog,SInt16 inItemNo,
 ControlHandle *outControl);
OSErr MoveDialogItem(DialogRef inDialog,SInt16 inItemNo,SInt16 inHoriz,SInt16 inVert);
OSErr SizeDialogItem(DialogRef inDialog,SInt16 inItemNo,SInt16 inHeight,SInt16 inWidth);
void HideDialogItem(DialogRef theDialog,short itemNo);
void ShowDialogItem(DialogRef theDialog,short itemNo);
short FindDialogItem(DialogRef theDialog,Point thePt);
void AppendDITL(DialogRef theDialog,Handle theHandle,DITLMethod theMethod);
void ShortenDITL(DialogRef theDialog,short numberItems);
OSErr AppendDialogItemList(DialogRef dialog,SInt16 ditlID,DITLMethod method);
short CountDITL(DialogRef the Dialog);
OSStatus InsertDialogItem (DialogRef theDialog,DialogItemIndex afterItem,
 DialogItemType itemType,Handle itemHandle,const Rect *box);
OSStatus RemoveDialogItems(DialogRef theDialog,DialogItemIndex itemNo,
 DialogItemIndex amountToRemove,Boolean disposeItemData);

Handling Text in Alerts and Dialogs
void ParamText(ConstStr255Param param0,ConstStr255Param param1,ConstStr255Param param2,
 ConstStr255Param param3);
void GetParamText(StringPtr param0,StringPtr param1,StringPtr param2,StringPtr param3);
void GetDialogItemText(Handle item,Str255 text)
void SetDialogItemText(Handle item,ConstStr255Param text);
void SelectDialogItemText(DialogRef theDialog,short itemNo,short strtSel,short endSel);
void SetDialogFont(short value);
void DialogCut(DialogRef theDialog);
void DialogPaste(DialogRef theDialog);
void DialogCopy(DialogRef theDialog);
void DialogDelete(DialogRef theDialog);

Handling Events in Dialogs
void ModalDialog(ModalFilterUPP modalFilter,short *itemHit);
Boolean IsDialogEvent(const EventRecord *theEvent);
Boolean DialogSelect(const EventRecord *theEvent,DialogRef *theDialog,short *itemHit);
void UpdateDialog(DialogRef theDialog,RgnHandle updateRgn);
void DrawDialog(DialogRef theDialog);
OSStatus SetModalDialogEventMask(DialogRef inDialog,EventMask inMask);
OSStatus GetModalDialogEventMask(DialogRef inDialog,EventMask *outMask);
OSStatus SetDialogTimeout(DialogRef inDialog,SInt16 inButtonToPress,UInt32 inSecondsToWait);
OSStatus GetDialogTimeout(DialogRef inDialog,SInt16 *outButtonToPress,
 UInt32 *outSecondsToWait,UInt32 *outSecondsRemaining);
Boolean StdFilterProc(DialogRef theDialog,EventRecord *event,DialogItemIndex *itemHit);
OSErr GetStdFilterProc(ModalFilterUPP *theProc);
OSErr SetDialogDefaultItem(DialogRef theDialog,DialogItemIndex newItem);
OSErr SetDialogCancelItem(DialogRef theDialog,DialogItemIndex newItem);
OSErr SetDialogTracksCursor(DialogRef theDialog,Boolean tracks);

Creating and Disposing of Universal Procedure Pointers for Event Filter
(Callback) Functions
ModalFilterUPP NewModalFilterUPP(ModalFilterProcPtr userRoutine);
void DisposeModalFilterUPP(ModalFilterUPP userUPP);

Application-Defined (Callback) Function
Boolean myModalFilterFunction(DialogRef theDialog,EventRecord *theEvent,
 DialogItemIndex *itemHit);

Dialogs and Alerts Version 1.0 8-33

Relevant Window Manager Functions (Mac OS X Only)
Showing and Hiding Sheets
OSStatus ShowSheetWindow(WindowRef inSheet,WindowRef inParentWindow);
OSStatus HideSheetWindow(WindowRef inSheet);
OSStatus GetSheetWindowParent(WindowRef inSheet,WindowRef *outParentWindow);

8-34 Version 1.0 Dialogs and Alerts

Demonstration Program DialogAndAlerts Listing
// ***
// DialogsAndAlerts.h CLASSIC EVENT MODEL
// ***
//
// This program initially opens a small modal dialog which is automatically closed after 10
// seconds, the timeout value having been set by a call to SetDialogTimeout. The program
// then:
//
// • Opens a window for the purposes of displaying advisory text and proving correct window
// updating and activation/deactivation in the presence of alerts and dialogs.
//
// • Allows the user to invoke, via the Demonstration menu, modal and movable modal alerts
// and dialogs, a modeless dialog and, on Mac OS X, a window-modal alert and dialog
// (i.e., sheets).
//
// The modal alert box is created programmatically using the StandardAlert function.
//
// The movable modal alert is created programmatically using the StandardAlert function on Mac
// OS 9 and the CreateStandardAlert function on Mac OS X.
//
// The modal dialog contains three checkboxes in one group box, and two pop-up menu buttons in
// another group box.
//
// The movable modal dialog contains four radio buttons in one group box, and a clock control
// and edit text item in another group box.
//
// The modeless dialog contains, amongst other items, an edit text item.
//
// The modal and movable modal alerts and dialogs use an application-defined event filter
// (callback) function.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, and Demonstration pull-down
// menus, and the pop-up menu buttons (preload, non-purgeable).
//
// • A 'WIND' resource (purgeable) (initially visible).
//
// • 'DLOG' resources (purgeable) (initially not visible) and associated 'DITL' resources
// (purgeable), 'dlgx' resources (purgeable), and 'dftb' resources (non-purgeable, but
// 'dftb' resources are automatically marked purgeable when read in).
//
// • 'CNTL' resources for primary group boxes, separator lines, pop-up menu buttons, a clock,
// and an image well (all purgeable).
//
// • 'STR#' resources (purgeable) containing the message and informative text for the alerts.
//
// • A 'cicn' resource (purgeable) for the modeless dialog box.
//
// • A 'ppat' resource (purgeable), which is used to colour the content region of the
// document window for update proving purposes.
//
// • 'hdlg' resources (purgeable) containing balloon help information for the modal and
// movable modal dialog.
//
// • An 'hrct' resource and associated 'hwin' resource (both purgeable) containing balloon
// help information for the modeless dialog.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

//
………
………………………………………………… includes

#include <Carbon.h>

//
………
…………………………………………………… defines

Dialogs and Alerts Version 1.0 8-35

#define rMenubar 128
#define mAppleApplication 128
#define iAbout 1
#define mFile 129
#define iClose 4
#define iQuit 12
#define mEdit 130
#define iCut 3
#define iCopy 4
#define iPaste 5
#define iClear 6
#define mDemonstration 131
#define iModalAlert 1
#define iMovableAlert 2
#define iModalDialog 3
#define iMovableModalDialog 4
#define iModeless 5
#define iWindowModalAlert 7
#define iWindowModalDialog 8
#define mFont 132
#define rWindow 128
#define rSplash 128
#define rModalDialog 129
#define iGridSnap 4
#define iShowGrid 5
#define iShowRulers 6
#define iFont 11
#define iSound 12
#define rMovableModalDialog 130
#define iCharcoal 7
#define iOilPaint 8
#define iPencil 9
#define iChalk 10
#define iClockOne 12
#define rModelessDialog 131
#define iEditTextSearchModeless 2
#define rSheetDialog 132
#define iEditTextSheetDialog 2
#define rAlertStrings 128
#define sModalMessage 1
#define sModalInformative 2
#define sMovableMessage 3
#define sMovableInformative 4
#define rSheetStrings 132
#define sAlertSheetMessage 1
#define sAlertSheetInformative 2
#define rPixelPattern 128
#define kSearchModeless 1
#define kSheetDialog 2

#define kReturn (SInt8) 0x0D
#define kEnter (SInt8) 0x03
#define kEscape (SInt8) 0x1B
#define kPeriod (SInt8) 0x2E

#define MAX_UINT32 0xFFFFFFFF

//
………
…………………… function prototypes

void main (void);
void doPreliminaries (void);
OSErr quitAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
void eventLoop (void);
void doIdle (void);
void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doKeyDown (EventRecord *);
void doUpdate (EventRecord *);
void doUpdateDocument (WindowRef);
void doActivate (EventRecord *);
void doActivateDocument (WindowRef,Boolean);
void doActivateDialogs (EventRecord *,Boolean);
void doOSEvent (EventRecord *);
void doAdjustMenus (void);
void doMenuChoice (SInt32);
void doEditMenu (MenuItemIndex);
void doDemonstrationMenu (MenuItemIndex);

8-36 Version 1.0 Dialogs and Alerts

void doExplicitlyDeactivateDocument (void);
Boolean doModalAlerts (Boolean);
Boolean doMovableModalAlertOnX (void);
Boolean doModalDialog (void);
Boolean doMovableModalDialog (void);
Boolean doCreateOrShowModelessDialog (void);
void doInContent (EventRecord *);
void doButtonHitInSearchModeless (void);
void doHideModelessDialog (WindowRef);
Boolean eventFilter (DialogRef,EventRecord *,SInt16 *);
void doPopupMenuChoice (ControlRef,SInt16);
void doDrawMessage (WindowRef,Boolean);
void doCopyPString (Str255,Str255);

Boolean doSheetAlert (void);
Boolean doSheetDialog (void);
void doButtonHitInSheetDialog (void);

void helpTagsModal (DialogRef);
void helpTagsMovableModal (DialogRef);
void helpTagsModeless (DialogRef);

// ***
// DialogsAndAlerts.c
// ***

//
………
………………………………………………… includes

#include "DialogsAndAlerts.h"

//
………
…………………………… global variables

Boolean gRunningOnX = false;
ModalFilterUPP gEventFilterUPP;
Str255 gCurrentString;
WindowRef gWindowRef;
SInt32 gSleepTime;
Boolean gDone;
Boolean gGridSnap = kControlCheckBoxUncheckedValue;
Boolean gShowGrid = kControlCheckBoxUncheckedValue;
Boolean gShowRule = kControlCheckBoxUncheckedValue;
SInt16 gBrushType = iCharcoal;
DialogRef gModelessDialogRef = NULL;

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 DialogRef dialogRef;
 SInt16 itemHit;

 //
………
……………………… do preliminaries

 doPreliminaries();

 //
………
set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 ExitToShell();
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)

Dialogs and Alerts Version 1.0 8-37

 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 DisableMenuItem(menuRef,0);
 }

 gRunningOnX = true;
 }

 // ………………………………………………… open small modal dialog and automatically dismiss it after 10 seconds

 dialogRef = GetNewDialog(rSplash,NULL,(WindowRef) -1);
 SetDialogTimeout(dialogRef,kStdOkItemIndex,10);

 do
 {
 ModalDialog(NULL,&itemHit);
 } while(itemHit != kStdOkItemIndex);

 DisposeDialog(dialogRef);

 // ………………………………………………………………………… create universal procedure pointer for event filter function

 gEventFilterUPP = NewModalFilterUPP((ModalFilterProcPtr) eventFilter);

 // ……… initial advisory text for
window header

 doCopyPString("\pBalloon (OS 8/9) and Help tag (OS X) help is available",gCurrentString);

 // ……
open a window, set font size

 if(!(gWindowRef = GetNewCWindow(rWindow,NULL,(WindowRef)-1)))
 ExitToShell();

 SetPortWindowPort(gWindowRef);
 if(!gRunningOnX)
 TextSize(10);

 //
………
………………………… enter eventLoop

 eventLoop();
}

// *** doPreliminaries

void doPreliminaries(void)
{
 OSErr osError;

 MoreMasterPointers(192);
 InitCursor();
 FlushEvents(everyEvent,0);

 osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
 0L,false);
 if(osError != noErr)
 ExitToShell();
}

// ** doQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{
 OSErr osError;
 DescType returnedType;
 Size actualSize;

 osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,0,
 &actualSize);

 if(osError == errAEDescNotFound)
 {
 gDone = true;
 osError = noErr;

8-38 Version 1.0 Dialogs and Alerts

 }
 else if(osError == noErr)
 osError = errAEParamMissed;

 return osError;
}

// *** eventLoop

void eventLoop(void)
{
 EventRecord eventStructure;
 Boolean gotEvent;

 gSleepTime = MAX_UINT32;
 gDone = false;

 while(!gDone)
 {
 gotEvent = WaitNextEvent(everyEvent,&eventStructure,gSleepTime,NULL);
 if(gotEvent)
 doEvents(&eventStructure);
 else
 {
 if(eventStructure.what == nullEvent)
 if(!gRunningOnX)
 doIdle();
 }
 }
}

// ** doIdle

void doIdle(void)
{
 if(FrontWindow() == GetDialogWindow(gModelessDialogRef))
 IdleControls(GetDialogWindow(gModelessDialogRef));
}

// ** doEvents

void doEvents(EventRecord *eventStrucPtr)
{
 switch(eventStrucPtr->what)
 {
 case kHighLevelEvent:
 AEProcessAppleEvent(eventStrucPtr);
 break;

 case mouseDown:
 doMouseDown(eventStrucPtr);
 break;

 case keyDown:
 doKeyDown(eventStrucPtr);
 break;

 case autoKey:
 if((eventStrucPtr->modifiers & cmdKey) == 0)
 doKeyDown(eventStrucPtr);
 break;

 case updateEvt:
 doUpdate(eventStrucPtr);
 break;

 case activateEvt:
 doActivate(eventStrucPtr);
 break;

 case osEvt:
 doOSEvent(eventStrucPtr);
 break;
 }
}

// *** doMouseDown

void doMouseDown(EventRecord *eventStrucPtr)

Dialogs and Alerts Version 1.0 8-39

{
 WindowRef windowRef;
 WindowPartCode partCode;

 partCode = FindWindow(eventStrucPtr->where,&windowRef);

 switch(partCode)
 {
 case inMenuBar:
 doAdjustMenus();
 doMenuChoice(MenuSelect(eventStrucPtr->where));
 break;

 case inContent:
 if(windowRef != FrontWindow())
 SelectWindow(windowRef);
 else
 doInContent(eventStrucPtr);
 break;

 case inDrag:
 DragWindow(windowRef,eventStrucPtr->where,NULL);
 break;

 case inGoAway:
 if(TrackGoAway(windowRef,eventStrucPtr->where))
 {
 if(GetWindowKind(windowRef) == kDialogWindowKind)
 {
 doHideModelessDialog(windowRef);
 doCopyPString("\pBalloon (OS 8/9) and Help tag (OS X) help is available",
 gCurrentString);
 }
 }
 break;
 }
}

// *** doKeyDown

void doKeyDown(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 SInt8 charCode;
 SInt32 windowRefCon;
 SInt16 itemHit;
 ControlRef controlRef;
 UInt32 finalTicks;
 DialogRef dialogRef;

 windowRef = FrontWindow();
 charCode = eventStrucPtr->message & charCodeMask;

 if(!(IsDialogEvent(eventStrucPtr)))
 {
 if((eventStrucPtr->modifiers & cmdKey) != 0)
 {
 doAdjustMenus();
 doMenuChoice(MenuEvent(eventStrucPtr));
 }
 }
 else
 {
 windowRefCon = GetWRefCon(windowRef);
 if(windowRefCon == kSearchModeless || windowRefCon == kSheetDialog)
 {
 if((charCode == kReturn) || (charCode == kEnter))
 {
 GetDialogItemAsControl(GetDialogFromWindow(windowRef),kStdOkItemIndex,&controlRef);
 HiliteControl(controlRef,kControlButtonPart);
 Delay(8,&finalTicks);
 HiliteControl(controlRef,kControlEntireControl);
 if(windowRefCon == kSearchModeless)
 doButtonHitInSearchModeless();
 else if(windowRefCon == kSheetDialog)
 doButtonHitInSheetDialog();
 return;
 }

8-40 Version 1.0 Dialogs and Alerts

 if((eventStrucPtr->modifiers & cmdKey) != 0)
 {
 if(charCode == 'X' || charCode == 'x' || charCode == 'C' || charCode == 'c' ||
 charCode == 'V' || charCode == 'v')
 {
 HiliteMenu(mEdit);
 DialogSelect(eventStrucPtr,&dialogRef,&itemHit);
 Delay(4,&finalTicks);
 HiliteMenu(0);
 }
 else
 {
 doAdjustMenus();
 doMenuChoice(MenuEvent(eventStrucPtr));
 }

 return;
 }

 DialogSelect(eventStrucPtr,&dialogRef,&itemHit);
 }
 }
}

// ** doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 DialogRef dialogRef;
 SInt16 itemHit;

 if(!(IsDialogEvent(eventStrucPtr)))
 {
 windowRef = (WindowRef) eventStrucPtr->message;
 doUpdateDocument(windowRef);
 }
 else
 DialogSelect(eventStrucPtr,&dialogRef,&itemHit);
}

// ** doUpdateDocument

void doUpdateDocument(WindowRef windowRef)
{
 GrafPtr oldPort;
 PixPatHandle pixpatHdl;
 Rect portRect;

 BeginUpdate(windowRef);

 GetPort(&oldPort);
 SetPortWindowPort(windowRef);

 pixpatHdl = GetPixPat(rPixelPattern);
 GetWindowPortBounds(windowRef,&portRect);
 FillCRect(&portRect,pixpatHdl);
 DisposePixPat(pixpatHdl);
 doDrawMessage(windowRef,windowRef == FrontWindow());

 SetPort(oldPort);

 EndUpdate(windowRef);
}

// ** doActivate

void doActivate(EventRecord *eventStrucPtr)
{
 Boolean becomingActive;
 WindowRef windowRef;

 becomingActive = (eventStrucPtr->modifiers & activeFlag) == activeFlag;

 if(!(IsDialogEvent(eventStrucPtr)))
 {
 windowRef = (WindowRef) eventStrucPtr->message;
 doActivateDocument(windowRef,becomingActive);
 }

Dialogs and Alerts Version 1.0 8-41

 else
 doActivateDialogs(eventStrucPtr,becomingActive);
}

// ** doActivateDocument

void doActivateDocument(WindowRef windowRef,Boolean becomingActive)
{
 if(becomingActive)
 doAdjustMenus();

 doDrawMessage(windowRef,becomingActive);
}

// ** doActivateModelessDialog

void doActivateDialogs(EventRecord *eventStrucPtr,Boolean becomingActive)
{
 DialogRef dialogRef;
 SInt16 windowRefCon;
 SInt16 itemHit;

 DialogSelect(eventStrucPtr,&dialogRef,&itemHit);

 windowRefCon = GetWRefCon(GetDialogWindow(dialogRef));

 if(becomingActive)
 {
 doAdjustMenus();
 if(windowRefCon == kSearchModeless || windowRefCon == kSheetDialog)
 gSleepTime = GetCaretTime();
 }
 else
 {
 if(windowRefCon == kSearchModeless || windowRefCon == kSheetDialog)
 gSleepTime = MAX_UINT32;
 }
}

// *** doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{
 switch((eventStrucPtr->message >> 24) & 0x000000FF)
 {
 case suspendResumeMessage:
 if((eventStrucPtr->message & resumeFlag) == 1)
 SetThemeCursor(kThemeArrowCursor);
 break;
 }
}

// *** doAdjustMenus

void doAdjustMenus(void)
{
 WindowRef windowRef;
 MenuRef menuRef;
 SInt32 windowRefCon;

 windowRef = FrontWindow();

 if(GetWindowKind(windowRef) == kApplicationWindowKind)
 {
 menuRef = GetMenuRef(mFile);
 DisableMenuItem(menuRef,iClose);
 menuRef = GetMenuRef(mEdit);
 DisableMenuItem(menuRef,0);
 menuRef = GetMenuRef(mDemonstration);
 EnableMenuItem(menuRef,iModeless);
 if(gRunningOnX)
 {
 if(IsWindowCollapsed(gWindowRef))
 {
 DisableMenuItem(menuRef,iWindowModalDialog);
 DisableMenuItem(menuRef,iWindowModalAlert);
 }
 else
 {

8-42 Version 1.0 Dialogs and Alerts

 EnableMenuItem(menuRef,iWindowModalDialog);
 EnableMenuItem(menuRef,iWindowModalAlert);
 }
 }
 }
 else if(GetWindowKind(windowRef) == kDialogWindowKind)
 {
 windowRefCon = GetWRefCon(windowRef);
 if(windowRefCon == kSearchModeless)
 {
 menuRef = GetMenuRef(mFile);
 EnableMenuItem(menuRef,iClose);
 menuRef = GetMenuRef(mEdit);
 EnableMenuItem(menuRef,0);
 menuRef = GetMenuRef(mDemonstration);
 DisableMenuItem(menuRef,iModeless);
 }
 else if(windowRefCon == kSheetDialog)
 {
 menuRef = GetMenuRef(mFile);
 DisableMenuItem(menuRef,iClose);
 menuRef = GetMenuRef(mEdit);
 EnableMenuItem(menuRef,0);
 menuRef = GetMenuRef(mDemonstration);
 EnableMenuItem(menuRef,iModeless);
 DisableMenuItem(menuRef,iWindowModalAlert);
 }
 else
 {
 menuRef = GetMenuRef(mFile);
 DisableMenuItem(menuRef,iClose);
 menuRef = GetMenuRef(mEdit);
 DisableMenuItem(menuRef,0);
 menuRef = GetMenuRef(mDemonstration);
 EnableMenuItem(menuRef,iModeless);
 }
 }

 DrawMenuBar();
}

// ** doMenuChoice

void doMenuChoice(SInt32 menuChoice)
{
 MenuID menuID;
 MenuItemIndex menuItem;
 SInt16 windowRefCon;

 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);

 if(menuID == 0)
 return;

 switch(menuID)
 {
 case mAppleApplication:
 if(menuItem == iAbout)
 SysBeep(10);
 break;

 case mFile:
 if(menuItem == iQuit)
 gDone = true;
 else if(menuItem == iClose)
 {
 if(GetWindowKind(FrontWindow()) == kDialogWindowKind)
 {
 windowRefCon = GetWRefCon(FrontWindow());
 if(windowRefCon == kSearchModeless)
 doHideModelessDialog(GetDialogWindow(gModelessDialogRef));
 }
 }
 break;

 case mEdit:
 doEditMenu(menuItem);
 break;

Dialogs and Alerts Version 1.0 8-43

 case mDemonstration:
 doDemonstrationMenu(menuItem);
 break;
 }

 HiliteMenu(0);
}

// ** doEditMenu

void doEditMenu(MenuItemIndex menuItem)
{
 WindowRef windowRef;
 SInt16 windowRefCon;
 DialogRef dialogRef;

 windowRef = FrontWindow();

 if(GetWindowKind(FrontWindow()) == kDialogWindowKind)
 {
 windowRefCon = GetWRefCon(windowRef);
 if(windowRefCon == kSearchModeless || windowRefCon == kSheetDialog)
 {
 dialogRef = GetDialogFromWindow(windowRef);

 switch(menuItem)
 {
 case iCut:
 DialogCut(dialogRef);
 break;

 case iCopy:
 DialogCopy(dialogRef);
 break;

 case iPaste:
 DialogPaste(dialogRef);
 break;

 case iClear:
 DialogDelete(dialogRef);
 break;
 }
 }
 }
}

// *** doDemonstrationMenu

void doDemonstrationMenu(MenuItemIndex menuItem)
{
 switch(menuItem)
 {
 case iModalAlert:
 if(!doModalAlerts(false))
 {
 SysBeep(10);
 ExitToShell();
 }
 break;

 case iMovableAlert:
 if(gRunningOnX)
 {
 if(!doMovableModalAlertOnX())
 {
 SysBeep(10);
 ExitToShell();
 }
 }
 else if(!doModalAlerts(true))
 {
 SysBeep(10);
 ExitToShell();
 }
 break;

 case iModalDialog:

8-44 Version 1.0 Dialogs and Alerts

 if(!doModalDialog())
 {
 SysBeep(10);
 ExitToShell();
 }
 break;

 case iMovableModalDialog:
 if(!doMovableModalDialog())
 {
 SysBeep(10);
 ExitToShell();
 }
 break;

 case iModeless:
 if(!doCreateOrShowModelessDialog())
 {
 SysBeep(10);
 ExitToShell();
 }
 break;

 case iWindowModalAlert:
 if(!doSheetAlert())
 {
 SysBeep(10);
 ExitToShell();
 }
 break;

 case iWindowModalDialog:
 if(!doSheetDialog())
 {
 SysBeep(10);
 ExitToShell();
 }
 break;
 }
}

// ** doExplicitlyDeactivateDocument

void doExplicitlyDeactivateDocument(void)
{
 if(FrontWindow() && (GetWindowKind(FrontWindow()) != kDialogWindowKind))
 doActivateDocument(FrontWindow(),false);
}

// *** doModalAlerts

Boolean doModalAlerts(Boolean movable)
{
 AlertStdAlertParamRec paramRec;
 Str255 messageText, informativeText;
 Str255 otherText = "\pOther";
 OSErr osError;
 DialogItemIndex itemHit;

 doExplicitlyDeactivateDocument();

 paramRec.movable = movable;
 paramRec.helpButton = true;
 paramRec.filterProc = gEventFilterUPP;
 paramRec.defaultText = (StringPtr) kAlertDefaultOKText;
 paramRec.cancelText = (StringPtr) kAlertDefaultCancelText;
 paramRec.otherText = (StringPtr) &otherText;
 paramRec.defaultButton = kAlertStdAlertOKButton;
 paramRec.cancelButton = kAlertStdAlertCancelButton;
 paramRec.position = kWindowDefaultPosition;

 if(!movable)
 GetIndString(messageText,rAlertStrings,sModalMessage);
 else
 GetIndString(messageText,rAlertStrings,sMovableMessage);
 GetIndString(informativeText,rAlertStrings,sModalInformative);

 osError = StandardAlert(kAlertStopAlert,messageText,informativeText,¶mRec,&itemHit);
 if(osError == noErr)

Dialogs and Alerts Version 1.0 8-45

 {
 if(itemHit == kAlertStdAlertOKButton)
 doCopyPString("\pOK Button hit",gCurrentString);
 else if (itemHit == kAlertStdAlertCancelButton)
 doCopyPString("\pCancel Button hit",gCurrentString);
 else if (itemHit == kAlertStdAlertOtherButton)
 doCopyPString("\pOther Button hit",gCurrentString);
 else if (itemHit == kAlertStdAlertHelpButton)
 doCopyPString("\pHelp Button hit",gCurrentString);
 }

 return (osError == noErr);
}

// ** doMovableModalAlertOnX

Boolean doMovableModalAlertOnX(void)
{
 AlertStdCFStringAlertParamRec paramRec;
 Str255 messageText, informativeText;
 CFStringRef messageTextCF, informativeTextCF;
 OSErr osError;
 DialogRef dialogRef;
 DialogItemIndex itemHit;

 doExplicitlyDeactivateDocument();

 GetStandardAlertDefaultParams(¶mRec,kStdCFStringAlertVersionOne);
 paramRec.movable = true;
 paramRec.helpButton = true;
 paramRec.cancelButton = kAlertStdAlertCancelButton;
 paramRec.cancelText = CFSTR("Cancel");
 paramRec.otherText = CFSTR("Other");

 GetIndString(messageText,rAlertStrings,sMovableMessage);
 GetIndString(informativeText,rAlertStrings,sMovableInformative);
 messageTextCF = CFStringCreateWithPascalString(NULL,messageText,
 CFStringGetSystemEncoding());
 informativeTextCF = CFStringCreateWithPascalString(NULL,informativeText,
 CFStringGetSystemEncoding());

 osError = CreateStandardAlert(kAlertCautionAlert,messageTextCF,informativeTextCF,¶mRec,
 &dialogRef);
 if(osError == noErr)
 {
 osError = RunStandardAlert(dialogRef,NULL,&itemHit);
 if(osError == noErr)
 {
 if(itemHit == kAlertStdAlertOKButton)
 doCopyPString("\pOK Button hit",gCurrentString);
 else if (itemHit == kAlertStdAlertCancelButton)
 doCopyPString("\pCancel Button hit",gCurrentString);
 else if (itemHit == kAlertStdAlertOtherButton)
 doCopyPString("\pOther Button hit",gCurrentString);
 else if (itemHit == kAlertStdAlertHelpButton)
 doCopyPString("\pHelp Button hit",gCurrentString);
 }
 }

 if(messageTextCF != NULL)
 CFRelease(messageTextCF);
 if(informativeTextCF != NULL)
 CFRelease(informativeTextCF);

 return (osError == noErr);
}

// *** doModalDialog

Boolean doModalDialog(void)
{
 DialogRef dialogRef;
 ControlRef controlRef;
 OSStatus osError;
 MenuRef menuRef;
 SInt16 numberOfItems, itemHit, controlValue;

 doExplicitlyDeactivateDocument();

8-46 Version 1.0 Dialogs and Alerts

 if(!(dialogRef = GetNewDialog(rModalDialog,NULL,(WindowRef) -1)))
 return false;

 SetDialogDefaultItem(dialogRef,kStdOkItemIndex);
 SetDialogCancelItem(dialogRef,kStdCancelItemIndex);

 GetDialogItemAsControl(dialogRef,iGridSnap,&controlRef);
 SetControlValue(controlRef,gGridSnap);
 GetDialogItemAsControl(dialogRef,iShowGrid,&controlRef);
 SetControlValue(controlRef,gShowGrid);
 GetDialogItemAsControl(dialogRef,iShowRulers,&controlRef);
 SetControlValue(controlRef,gShowRule);

 menuRef = NewMenu(mFont,NULL);

 if((osError = CreateStandardFontMenu(menuRef,0,0,0,NULL)) == noErr)
 {
 GetDialogItemAsControl(dialogRef,iFont,&controlRef);
 SetControlMinimum(controlRef,1);
 numberOfItems = CountMenuItems(menuRef);
 SetControlMaximum(controlRef,numberOfItems);
 SetControlData(controlRef,kControlEntireControl,kControlPopupButtonMenuRefTag,
 sizeof(menuRef),&menuRef);
 }
 else
 return false;

 if(gRunningOnX)
 helpTagsModal(dialogRef);

 ShowWindow(GetDialogWindow(dialogRef));

 do
 {
 ModalDialog(gEventFilterUPP,&itemHit);

 if(itemHit == iGridSnap || itemHit == iShowGrid || itemHit == iShowRulers)
 {
 GetDialogItemAsControl(dialogRef,itemHit,&controlRef);
 SetControlValue(controlRef,!GetControlValue(controlRef));
 }
 else if(itemHit == iFont || itemHit == iSound)
 {
 GetDialogItemAsControl(dialogRef,itemHit,&controlRef);
 controlValue = GetControlValue(controlRef);
 doPopupMenuChoice(controlRef,controlValue);
 }
 } while((itemHit != kStdOkItemIndex) && (itemHit != kStdCancelItemIndex));

 if(itemHit == kStdOkItemIndex)
 {
 GetDialogItemAsControl(dialogRef,iGridSnap,&controlRef);
 gGridSnap = GetControlValue(controlRef);
 GetDialogItemAsControl(dialogRef,iShowGrid,&controlRef);
 gShowGrid = GetControlValue(controlRef);
 GetDialogItemAsControl(dialogRef,iShowRulers,&controlRef);
 gShowRule = GetControlValue(controlRef);
 }

 DisposeDialog(dialogRef);

 doCopyPString("\pBalloon (OS 8/9) and Help tag (OS X) help is available",gCurrentString);

 return true;
}

// ** doMovableModalDialog

Boolean doMovableModalDialog(void)
{
 DialogRef dialogRef;
 ControlRef controlRef;
 SInt16 oldBrushType, itemHit, a;

 doExplicitlyDeactivateDocument();

 if(!(dialogRef = GetNewDialog(rMovableModalDialog,NULL,(WindowRef) -1)))
 return false;

Dialogs and Alerts Version 1.0 8-47

 SetDialogDefaultItem(dialogRef,kStdOkItemIndex);
 SetDialogCancelItem(dialogRef,kStdCancelItemIndex);
 SetDialogTracksCursor(dialogRef,true);

 GetDialogItemAsControl(dialogRef,gBrushType,&controlRef);
 SetControlValue(controlRef,kControlRadioButtonCheckedValue);

 GetDialogItemAsControl(dialogRef,iClockOne,&controlRef);
 SetKeyboardFocus(GetDialogWindow(dialogRef),controlRef,kControlClockPart);

 oldBrushType = gBrushType;

 if(gRunningOnX)
 helpTagsMovableModal(dialogRef);

 ShowWindow(GetDialogWindow(dialogRef));

 do
 {
 ModalDialog(gEventFilterUPP,&itemHit);

 if(itemHit >= iCharcoal && itemHit <= iChalk)
 {
 for(a=iCharcoal;a<=iChalk;a++)
 {
 GetDialogItemAsControl(dialogRef,a,&controlRef);
 SetControlValue(controlRef,kControlRadioButtonUncheckedValue);
 }

 GetDialogItemAsControl(dialogRef,itemHit,&controlRef);
 SetControlValue(controlRef,kControlRadioButtonCheckedValue);
 gBrushType = itemHit;
 }
 } while((itemHit != kStdOkItemIndex) && (itemHit != kStdCancelItemIndex));

 if(itemHit == kStdCancelItemIndex)
 gBrushType = oldBrushType;

 DisposeDialog(dialogRef);

 return true;
}

// ** doCreateOrShowModelessDialog

Boolean doCreateOrShowModelessDialog(void)
{
 ControlRef controlRef;
 Str255 stringData = "\pwicked googly";
 MenuRef menuRef;

 if(gModelessDialogRef == NULL)
 {
 if(!(gModelessDialogRef = GetNewDialog(rModelessDialog,NULL,(WindowRef) -1)))
 return false;

 SetWRefCon(GetDialogWindow(gModelessDialogRef),(SInt32) kSearchModeless);

 SetDialogDefaultItem(gModelessDialogRef,kStdOkItemIndex);

 GetDialogItemAsControl(gModelessDialogRef,iEditTextSearchModeless,&controlRef);
 SetDialogItemText((Handle) controlRef,stringData);
 SelectDialogItemText(gModelessDialogRef,iEditTextSearchModeless,0,32767);

 if(gRunningOnX)
 helpTagsModeless(gModelessDialogRef);

 ShowWindow(GetDialogWindow(gModelessDialogRef));
 }
 else
 {
 ShowWindow(GetDialogWindow(gModelessDialogRef));
 SelectWindow(GetDialogWindow(gModelessDialogRef));
 }

 if(gRunningOnX)
 {
 menuRef = GetMenuRef(mFile);
 EnableMenuItem(menuRef,0);

8-48 Version 1.0 Dialogs and Alerts

 }

 return true;
}

// *** doInContent

void doInContent(EventRecord *eventStrucPtr)
{
 WindowRef windowRef;
 SInt32 windowRefCon;
 DialogRef dialogRef;
 SInt16 itemHit;

 windowRef = FrontWindow();

 if(!(IsDialogEvent(eventStrucPtr)))
 {
 // Handle clicks in document window content region here.
 }
 else
 {
 windowRefCon = GetWRefCon(windowRef);
 if(windowRefCon == kSearchModeless)
 {
 if(DialogSelect(eventStrucPtr,&dialogRef,&itemHit))
 if(itemHit == kStdOkItemIndex)
 doButtonHitInSearchModeless();
 }
 else if(windowRefCon == kSheetDialog)
 {
 if(DialogSelect(eventStrucPtr,&dialogRef,&itemHit))
 if(itemHit == kStdOkItemIndex)
 doButtonHitInSheetDialog();
 }
 }
}

// *** doButtonHitInSearchModeless

void doButtonHitInSearchModeless(void)
{
 ControlRef controlRef;
 GrafPtr oldPort;

 GetDialogItemAsControl(gModelessDialogRef,iEditTextSearchModeless,&controlRef);
 GetDialogItemText((Handle) controlRef,gCurrentString);

 GetPort(&oldPort);
 SetPortWindowPort(gWindowRef);
 doDrawMessage(gWindowRef,false);
 SetPort(oldPort);
}

// ** doHideModelessDialog

void doHideModelessDialog(WindowRef windowRef)
{
 SInt16 windowRefCon;
 MenuRef menuRef;

 if(gRunningOnX)
 BringToFront(gWindowRef);

 HideWindow(windowRef);

 windowRefCon = GetWRefCon(windowRef);
 if(windowRefCon == kSearchModeless)
 gSleepTime = MAX_UINT32;

 if(gRunningOnX)
 {
 menuRef = GetMenuRef(mFile);
 DisableMenuItem(menuRef,0);
 }
}

// *** eventFilter

Dialogs and Alerts Version 1.0 8-49

Boolean eventFilter(DialogRef dialogRef,EventRecord *eventStrucPtr,SInt16 *itemHit)
{
 Boolean handledEvent;
 GrafPtr oldPort;

 handledEvent = false;

 if((eventStrucPtr->what == updateEvt) &&
 ((WindowRef) eventStrucPtr->message != GetDialogWindow(dialogRef)))
 {
 if(!gRunningOnX)
 doUpdate(eventStrucPtr);
 }
 else if((eventStrucPtr->what == autoKey) && ((eventStrucPtr->modifiers & cmdKey) != 0))
 {
 handledEvent = true;
 return handledEvent;
 }
 else
 {
 GetPort(&oldPort);
 SetPortDialogPort(dialogRef);

 handledEvent = StdFilterProc(dialogRef,eventStrucPtr,itemHit);

 SetPort(oldPort);
 }

 return handledEvent;
}

// *** doPopupMenuChoice

void doPopupMenuChoice(ControlRef controlRef,SInt16 controlValue)
{
 MenuRef menuRef;
 Size actualSize;
 Str255 itemName;
 GrafPtr oldPort;

 GetControlData(controlRef,kControlEntireControl,kControlPopupButtonMenuHandleTag,
 sizeof(menuRef),&menuRef,&actualSize);
 GetMenuItemText(menuRef,controlValue,itemName);
 doCopyPString(itemName,gCurrentString);

 GetPort(&oldPort);
 SetPortWindowPort(gWindowRef);
 doDrawMessage(gWindowRef,false);
 SetPort(oldPort);
}

// *** doDrawMessage

void doDrawMessage(WindowRef windowRef,Boolean inState)
{
 Rect portRect, headerRect;
 CFStringRef stringRef;
 Rect textBoxRect;

 if(windowRef == gWindowRef)
 {
 SetPortWindowPort(windowRef);
 GetWindowPortBounds(windowRef,&portRect);
 SetRect(&headerRect,portRect.left - 1,portRect.bottom - 26,portRect.right + 1,
 portRect.bottom + 1);
 DrawThemePlacard(&headerRect,inState);

 if(inState == kThemeStateActive)
 TextMode(srcOr);
 else
 TextMode(grayishTextOr);

 stringRef = CFStringCreateWithPascalString(NULL,gCurrentString,
 CFStringGetSystemEncoding());
 SetRect(&textBoxRect,portRect.left,portRect.bottom - 19,portRect.right,
 portRect.bottom - 4);
 DrawThemeTextBox(stringRef,kThemeSmallSystemFont,0,true,&textBoxRect,teJustCenter,NULL);
 if(stringRef != NULL)
 CFRelease(stringRef);

8-50 Version 1.0 Dialogs and Alerts

 TextMode(srcOr);
 }
}

// *** doCopyPString

void doCopyPString(Str255 sourceString,Str255 destinationString)
{
 SInt16 stringLength;

 stringLength = sourceString[0];
 BlockMove(sourceString + 1,destinationString + 1,stringLength);
 destinationString[0] = stringLength;
}

// ***
// Sheets.c
// ***

//
………
………………………………………………… includes

#include "DialogsAndAlerts.h"

//
………
…………………………… global variables

WindowRef gSheetDialogWindowRef = NULL;

extern WindowRef gWindowRef;
extern Boolean gRunningOnX;
extern Str255 gCurrentString;

// ** doSheetAlert

Boolean doSheetAlert(void)
{
 AlertStdCFStringAlertParamRec paramRec;
 Str255 messageText, informativeText;
 CFStringRef messageTextCF, informativeTextCF;
 OSStatus osError;
 DialogRef dialogRef;
 MenuRef menuRef;

 GetStandardAlertDefaultParams(¶mRec,kStdCFStringAlertVersionOne);

 GetIndString(messageText,rSheetStrings,sAlertSheetMessage);
 GetIndString(informativeText,rSheetStrings,sAlertSheetInformative);
 messageTextCF = CFStringCreateWithPascalString(NULL,messageText,
 CFStringGetSystemEncoding());
 informativeTextCF = CFStringCreateWithPascalString(NULL,informativeText,
 CFStringGetSystemEncoding());

 osError = CreateStandardSheet(kAlertCautionAlert,messageTextCF,informativeTextCF,¶mRec,
 GetWindowEventTarget(gWindowRef),&dialogRef);
 if(osError == noErr)
 osError = ShowSheetWindow(GetDialogWindow(dialogRef),gWindowRef);

 CFRelease(messageTextCF);
 CFRelease(informativeTextCF);

 menuRef = GetMenuRef(mDemonstration);
 if(menuRef != NULL)
 {
 DisableMenuItem(menuRef,iWindowModalDialog);
 DisableMenuItem(menuRef,iWindowModalAlert);
 }

 return (osError == noErr);
}

// *** doSheetDialog

Boolean doSheetDialog(void)
{
 DialogRef dialogRef;

Dialogs and Alerts Version 1.0 8-51

 ControlRef controlRef;
 Str255 stringData = "\pBradman";
 OSStatus osError = noErr;
 MenuRef menuRef;

 if(!(dialogRef = GetNewDialog(rSheetDialog,NULL,(WindowRef) -1)))
 return false;

 SetWRefCon(GetDialogWindow(dialogRef),(SInt32) kSheetDialog);

 SetDialogDefaultItem(dialogRef,kStdOkItemIndex);

 GetDialogItemAsControl(dialogRef,iEditTextSheetDialog,&controlRef);
 SetDialogItemText((Handle) controlRef,stringData);
 SelectDialogItemText(dialogRef,iEditTextSheetDialog,0,32767);

 gSheetDialogWindowRef = GetDialogWindow(dialogRef);
 osError = ShowSheetWindow(gSheetDialogWindowRef,gWindowRef);

 menuRef = GetMenuRef(mDemonstration);
 if(menuRef != NULL)
 DisableMenuItem(menuRef,iWindowModalDialog);

 return (osError == noErr);
}

// ** doButtonHitInSheetDialog

void doButtonHitInSheetDialog(void)
{
 DialogRef dialogRef;
 ControlRef controlRef;
 GrafPtr oldPort;

 dialogRef = GetDialogFromWindow(gSheetDialogWindowRef);

 GetDialogItemAsControl(dialogRef,iEditTextSheetDialog,&controlRef);
 GetDialogItemText((Handle) controlRef,gCurrentString);

 HideSheetWindow(gSheetDialogWindowRef);
 DisposeDialog(dialogRef);
 gSheetDialogWindowRef = NULL;

 GetPort(&oldPort);
 SetPortWindowPort(gWindowRef);
 doDrawMessage(gWindowRef,true);
 SetPort(oldPort);
}

// ***
// HelpTags.c
// ***

//
………
………………………………………………… includes

#include "DialogsAndAlerts.h"
#include <string.h>

// *** helpTagsModal

void helpTagsModal(DialogRef dialogRef)
{
 HMHelpContentRec helpContent;
 SInt16 a;
 static SInt16 itemNumber[7] = { 1,2,3,7,8,10,11 };
 ControlRef controlRef;

 memset(&helpContent,0,sizeof(helpContent));

 HMSetTagDelay(500);
 HMSetHelpTagsDisplayed(true);

 helpContent.version = kMacHelpVersion;
 helpContent.tagSide = kHMOutsideTopCenterAligned;
 helpContent.content[kHMMinimumContentIndex].contentType = kHMStringResContent;
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmResID = 129;

8-52 Version 1.0 Dialogs and Alerts

 for(a = 1;a <= 7; a++)
 {
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = a;
 GetDialogItemAsControl(dialogRef,itemNumber[a - 1],&controlRef);
 HMSetControlHelpContent(controlRef,&helpContent);
 }
}

// ** helpTagsMovableModal

void helpTagsMovableModal(DialogRef dialogRef)
{
 HMHelpContentRec helpContent;
 SInt16 a;
 static SInt16 itemNumber[9] = { 1,2,3,4,6,11,12,13,14 };
 ControlRef controlRef;

 memset(&helpContent,0,sizeof(helpContent));

 HMSetTagDelay(500);
 HMSetHelpTagsDisplayed(true);

 helpContent.version = kMacHelpVersion;
 helpContent.tagSide = kHMOutsideTopCenterAligned;
 helpContent.content[kHMMinimumContentIndex].contentType = kHMStringResContent;
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmResID = 130;

 for(a = 1;a <= 9; a++)
 {
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = a;
 GetDialogItemAsControl(dialogRef,itemNumber[a - 1],&controlRef);
 HMSetControlHelpContent(controlRef,&helpContent);
 }
}

// ** helpTagsModeless

void helpTagsModeless(DialogRef dialogRef)
{
 HMHelpContentRec helpContent;
 SInt16 a;
 static SInt16 itemNumber[7] = { 1,2,3,4,5,6,7 };
 ControlRef controlRef;

 memset(&helpContent,0,sizeof(helpContent));

 HMSetTagDelay(500);
 HMSetHelpTagsDisplayed(true);

 helpContent.version = kMacHelpVersion;
 helpContent.tagSide = kHMOutsideTopCenterAligned;
 helpContent.content[kHMMinimumContentIndex].contentType = kHMStringResContent;
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmResID = 131;

 for(a = 1;a <= 7; a++)
 {
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = a;
 GetDialogItemAsControl(dialogRef,itemNumber[a - 1],&controlRef);
 HMSetControlHelpContent(controlRef,&helpContent);
 }
}

// ***

Dialogs and Alerts Version 1.0 8-53

Demonstration Program DialogsAndAlerts Comments
When this program is run, the user should:

• Invoke alerts and dialogs by choosing items in the Demonstration menu, noting window update/activation/deactivation and
menu enabling/disabling effects.

• On Mac OS 8/9, choose Show Balloons from the Help menu and pass the cursor over the various items in the dialogs,
noting the information in the help balloons. Also note the updating of alerts and dialogs, and of the window, behind the
help balloon when the balloon closes.

• On Mac OS X, pause the cursor over the various items in the dialogs, noting the information in the help tags.

• Note the effects on the menus when the various alerts and dialogs are the front window.

• Click anywhere outside the modal alert and modal dialog when they are the frontmost window, noting that the only
response is the system alert sound.

• Note that, when the movable modal alert and movable modal dialog are displayed:

• The program can be sent to the background by clicking outside the alert or dialog and the document window, or by
bringing another application to the foreground.

• The program can be brought to the foreground again by clicking inside the alert or dialog, or the document window.

• Note that, when the movable modal dialog and (on Mac OS X) the window-modal (sheet) dialog are displayed, the Edit
menu and its Cut, Copy, and Paste items are enabled, given that the edit text items in these dialogs always have keyboard
focus.

• Note that, when the modeless dialog is displayed:

• It behaves like a normal document window when the user:

• Clicks outside it when it is the frontmost window.

• Clicks inside it when it is not the frontmost window.

• It can be hidden by clicking in the close box/button or by selecting Close from the File menu.

• A modal alert, movable modal alert, modal dialog or movable modal dialog can be invoked "on top of" the modeless
dialog.

• The Edit menu and its Cut, Copy, Paste, and Clear items are enabled so as to support text editing in the edit text item.

• Note that all alerts and dialogs respond correctly to Return and Enter key presses, and that the modal alert, modal dialog
and movable modal dialog also respond correctly to escape key and Command-period presses.

• Note that, when an alert or dialog is the frontmost window, the window and content region are deactivated, the latter
evidenced by dimming of the text in the document window's window header.

• In the modal dialog, click on the checkboxes to change their settings, noting that the new settings are remembered when
the dialog is dismissed using the OK button, but not remembered when the dialog is dismissed using the Cancel button.
Also, choose items in the two pop-up menus, noting that the chosen item is displayed in the document window's window
header.

• In the movable modal dialog, click on the radio buttons to change their settings, noting that the new setting is
remembered when the dialog is dismissed using the OK button, but not remembered when the dialog is dismissed using
the Cancel button. In the case of the clock control and edit text item, change the item/part with keyboard focus using the
Tab key or by clicking in that item/part. In the case of the edit text item, enter text, and edit that text using the Edit
menu's Cut, Copy, Paste, and Clear items and their Command-key equivalents. Note that the cursor shape changes
whenever the cursor is moved over the edit text item.

• In the modeless dialog and (on Mac OS X) the window-modal (sheet) dialog, enter text, and edit that text using the Edit
menu's Cut, Copy, Paste, and Clear items and their Command-key equivalents. Note that, because no cursor adjustment
function is included in the program, the cursor shape does not change whenever the cursor is moved over the edit text
item. Also note that, when the Search button is clicked (or the Return or Enter keys are pressed) the text in the edit text
item is displayed in the document window's window header.

• On Mac OS X, when a window-modal (sheet) alert or dialog is showing, minimise the window into the Dock and then
expand the window from the dock.

In the 'DITL' resources for the modal and movable modal dialogs, note that the item numbers of the primary group box items
are lower than the item numbers of the items visually contained by those group box items. This is to ensure that the group
boxes do not draw over, and thus erase, the image of these contained items.

In the 'dlgx' resources, note that all feature flags are set except for the kDialogFlagsHandlesMovableModal flag in 'dlgx'
resources for the modal dialog and modeless dialog. Thus dialogs have a root control and embedding hierarchy.

8-54 Version 1.0 Dialogs and Alerts

Although, for demonstration purposes, this program creates modal alerts and dialogs, it is emphasised that Aqua Human
Interface Guidelines require that, on Mac OS X, applications use modal alerts and dialogs only in exceptional purposes. On
Mac OS X, the vast majority of alerts and dialogs should be application-modal or window-modal.

On Mac OS X, explanatory Help tags are available for the modal, movable modal, and modeless dialogs. The associated
source code (in the source code file HelpTags.c) is not explained in these comments because the provision of Help tags is
incidental to the demonstration. For information on creating help tags, see Chapter 25. Note that it is also possible to display
help tags on Mac OS 8/9; however, it is considered by the author that their "look" is somewhat at odds with the Platinum
appearance, and that help balloons remain the most appropriate option for Mac OS 8/9.

The CodeWarrior project for this program adds the CarbonFrameWorksLib stub library because certain functions are used that
are only available on Mac OS X. (See "Carbon and Available APIs" at Chapter 25.) Those functions (CreateStandardAlert,
RunStandardAlert, GetStandardAlertDefaultParams, CreateStandardSheet, ShowSheetWindow, HideSheetWindow) are only
called when the program is run on Mac OS X.

DialogsAndAlerts.h
defines
Constants are established for dialog resource IDs and for the item numbers of certain items in the item lists associated with
the dialogs. rAlertStrings and rSheetStrings represent the resource IDs of 'STR#' resources holding strings for the message
and informative text (label and narrative text in Mac OS 8/9 parlance) for the modal alert, movable modal alert, and window-
modal (sheet) alert.

The values represented by kSearchModeless and kSheetDialog will be stored as the reference constant in the window object
in, respectively, the modeless dialog and window-modal (sheet) dialog objects. This enables the program to distinguish
between these two dialogs.

The penultimate block establishes constants representing the character codes for the Return, Enter, escape, and period keys.

Finally, MAX_UINT32 is defined as the maximum possible unsigned long value. This value will be assigned to WaitNextEvent's
sleep parameter at program launch.

DialogsAndAlerts.c
Global Variables
gEventFilterUPP will be assigned a universal procedure pointer to an application-defined event filter (callback) function.
gSleepTime will be assigned the value to be used as the sleep parameter in the WaitNextEvent call. (This value will be
changed during program execution.)

The three variables after gDone will store the current control value of the checkboxes in the modal dialog. The next variable
will store the item number of the currently selected radio button in the movable modal dialog.

Finally, the pointer to the dialog object for the modeless dialog is declared as a global variable.

main
GetNewDialog is called to create a small modal dialog. SetDialogTimeout is then called with 10 (seconds) passed in the
inSecondsToWait parameter and 1 passed in the inButtonToPress parameter. (In the associated 'DITL' resource, Item 1 is the
OK push button, which has been hidden.) The use of SetDialogTimeout requires that the application handle events for the
dialog through the ModalDialog function, hence the ModalDialog do-while loop. This allows the Dialog Manager to simulate an
item selection. After 10 seconds, the Dialog Manager simulates a user click in the (invisible) OK button, causing the do-while
loop to exit. The dialog is then disposed of. (Note that pressing the Return key before the 10 seconds has elapsed will also
dispose of the dialog.)

The call to NewModalFilterUPP creates a universal procedure pointer for the event filter (callback) function.

Note that error handling here and in other areas of this demonstration program is somewhat rudimentary. In the unlikely
event that certain calls fail, ExitToShell is called to terminate the program.

eventLoop
The variable that will be used as WaitNextEvent's sleep parameter (gSleepTime) is initially set to the maximum unsigned long
value. Note that the value assigned to gSleepTime will be changed at certain points in the program.

When a NULL event is returned by WaitNextEvent, if the program is running on Mac OS 8/9, doIdle is called.

doIdle
doIdle is invoked, on Mac OS 8/9 only, whenever WaitNextEvent returns a null event.

If the front window is the modeless dialog, the function IdleControls is called. IdleControls calls the control definition function
of those controls in the specified window which do idle-time processing. In this case, the control is an edit text control, and
the call causes the control definition function to call TextEdit to blink the insertion point caret. (This call is not necessary on
Mac OS X because controls on Mac OS X have built-in timers.)

Dialogs and Alerts Version 1.0 8-55

doEvents
doEvents switches according to the event type received. (It is important to remember at this point that events that occur
when the modal dialog or movable modal dialog have been invoked are not handled by the main event loop but by the
ModalDialog function.)

Note that, at the autoKey case, the function doKeyDown is called only if the Command key is not down. This is to prevent the
Command-key equivalents for cut, copy, and paste from repeating when the user presses and holds down those Command-
key equivalents while editing text in the modeless dialog's edit text item.

In this program, autoKey events generated while the Command key is down are also discarded in the event filter (callback)
function eventFilter (see below). This means that the behaviour of the edit text item in the movable modal dialog will
replicate that of the edit text item in the modeless dialog.

(Many commercial and shareware programs (BBEdit excepted) do not discard autoKey events in these circumstances. The
author considers that to be an oversight.)

doMouseDown
doMouseDown handles mouse-down events. Mouse-downs in the content region and in the close box/button are of
significance to the demonstration. If a mouse-down occurred in a close box/button, if TrackGoAway returns true, and if the
window is the modeless dialog, doHideModelessDialog is called. (In this demonstration, the modeless dialog, but not the
document window, has a close box/button.)

doKeyDown
doKeyDown handles all key-down and auto-key events.

First, the character code is extracted from the message field of the event structure. Then IsDialogEvent is called to determine
whether the event occurred in the modeless dialog or window-modal (sheet) dialog, or in the document window.

If the event occurred in a document window, and if the modifiers field of the event structure indicates that the Command key
was down, the function for adjusting the menus is called, MenuEvent is called to return the long value containing the menu
and menu item associated with the Command-key equivalent, and the long value is passed to doMenuChoice for further
handling.

If, however, the event occurred in the modeless dialog dialog or window-modal (sheet) dialog:

• If the key pressed was the Return or Enter key, GetDialogItemAsControl is called to get a reference to the single push
button control in the modeless dialog (item 1 in the item list). The push button is then highlighted for eight ticks (this has
an effect on Mac OS 8/9 only), and then unhighlighted before a function is called to extract the text from the edit text item
and display it in the document window's window header. doKeyDown then returns because it is not intended that the edit
text item receive Return and Enter key presses.

• If the Command key was down:

• If either the X, C, or V key was pressed (that is, the user has pressed the Cut, Copy, or Paste Command-key equivalent),
DialogSelect is called to further handle the event. DialogSelect uses TextEdit to cut, copy, or paste the text in the edit
text item. (The calls to HiliteMenu briefly highlight the Edit menu to indicated to the user that an Edit menu Command-
key equivalent has just been used. This replicates the highlighting that ModalDialog performs when Command-key
presses occur in modal and movable modal dialogs with edit text items.)

• If neither the X, C, nor V key was pressed, the function for adjusting the menus is called, MenuEvent is called to return
the long value containing the menu and menu item associated with the Command-key equivalent, and the long value is
passed to doMenuChoice for further handling.

• doKeyDown returns so as to bypass the second call to DialogSelect.

Thus the Command-key equivalents other than those for Cut, Copy, and Paste remain available to the user via the main
event loop, while the Command-key equivalents for Cut, Copy, and Paste are trapped and passed to DialogSelect for
handling.

• If the Return key and the Enter key were not pressed, and if the Command key was not down, DialogSelect is called to
handle the keystroke in conjunction with TextEdit, the visual result being that the character appears in the edit text item.

doUpdate
doUpdate performs the initial handling of update events.

If the call to IsDialogEvent reveals that the event is for a window of the document kind, a function for updating the document
window is called.

If the event is for the modeless dialog or window-modal (sheet) dialog, DialogSelect is called to handle the event.
DialogSelect calls BeginUpdate, DrawDialog, and EndUpdate to redraw the dialog's content area. To restrict the redraw to the
update region, an alternative is to call BeginUpdate, UpdateDialog, and EndUpdate. (Recall here that update regions
BeginUpdate and EndUpdate are irrelevant on Mac OS X.)

Note that, on Mac OS X, the call to DialogSelect is really only necessary in the case of the window-modal (sheet) dialog.

8-56 Version 1.0 Dialogs and Alerts

doUpdateDocument
doUpdateDocument simply fills the content region of the document window with a colour, using a pixel patter ('ppat') resource
and a call to FillCRect for that purpose, and then calls a function which draws a window header frame and the current contents
of gCurrentString.

doActivate
doActivate performs initial handling of activate events. If the call to IsDialogEvent reveals that the event is for a window of
the document kind, the function for activating/deactivating the document window is called, otherwise the function for
activating/deactivating the modeless dialog is called.

doActivateDocument
doActivateDocument performs window activation/deactivation for the document window. If the window is becoming active,
the menus are adjusted as appropriate for a document window. The call doDrawMessage draws a window header frame in the
window, and the current contents of gMessageString, in either the activated or deactivated mode.

doActivateDialogs
doActivateDialogs performs window activation and deactivation for the modeless dialog and window-modal (sheet) dialog.

DialogSelect is called to handle the event. If the modeless or window-modal (sheet) dialog is becoming active, DialogSelect
activates all controls and, on Mac OS 8/9, redraws the one-pixel-wide modeless dialog frame in the active mode. If the
modeless dialog is going to the back, DialogSelect deactivates all controls and, on Mac OS 8/9, redraws the one-pixel-wide
modeless dialog frame in the inactive mode.

In the remaining code, if either the modeless dialog or window-modal (sheet) dialog is becoming active, the menus are
adjusted and the global variable used in the sleep parameter of the WaitNextEvent function is assigned the value returned by
GetCaretTime (the cursor-blinking interval set by the user in the General Controls control panel (Mac OS 8/9) and System
preferences (Mac OS X)). This is necessary to ensure that null events will always be generated, and thus doIdle and
IdleControls will be called (necessary on Mac OS 8/9 only), at an interval short enough to ensure insertion point caret blinking
at the proper rate.

If if either the modeless dialog or window-modal (sheet) dialog is being deactivated, the sleep parameter for the
WaitNextEvent function is reset to the maximum unsigned long value.

(Recall that changing the value in gSleepTime is irrelevant on Mac OS X because the function doIdle will not be called when
the program is running on Mac OS X.)

doAdjustMenus
Note that, if the program is running on Mac OS X, and a call to IsWindowCollapsed reveals that the document window has
been minimised to the dock, the menu items which invoke the window-modal (sheet) alert and (sheet) dialog are disabled.

doMenuChoice
doMenuChoice handles menu choices. If the choice was the Close item in the File menu, and if the front window is the
modeless dialog, a function which hides that modeless dialog is called. (In this program, because the document window does
not have a close box/button, the Close item is only enabled when the modeless dialog is the front window.)

doEditMenu
doEditMenu first determines whether the front window is the modeless dialog or window-modal (sheet) dialog (both of which
have an edit text item). If so, a reference to the dialog is obtained, following which Dialog Manager functions are called to cut,
copy, paste, or clear text as appropriate. The Dialog Manager, in conjunction with TextEdit, performs these operations.

doDemonstrationMenu
doDemonstrationMenu handles choices from the Demonstration menu, switching according to the menu item passed to it.
Error handling in this function is somewhat rudimentary in that the program simply terminates.

Note that, when the Modal Alert item is chosen, doModalAlerts is called with false is passed in the function's parameter. Note
also that, when the Movable Modal Alert item is chosen, doMovableModalAlertonX is called if the program is running on Mac
OS X, otherwise doModalAlerts is called with true passed in the function's parameter. This latter reflects the fact that, on Mac
OS X, the movable modal alert will be created by a function that is not available on Mac OS 8/9.

doExplicitlyDeactivateDocument
doExplicitlyDeactivateDocument is called at the beginning of those functions which create modal and movable modal alerts
and dialogs.

If there is at least one window of any type open, and if that front window is of the document kind, the function for
activating/deactivating document windows is called to deactivate the window.

doModalAlerts
doModalAlerts creates, displays, manages, and disposes of the modal alert and, on Mac OS 8/9, the movable modal alert.

The call to doExplicitlyDeactivateDocument deactivates the document window.

At the next nine lines, values are assigned to the fields of a standard alert parameter structure. In sequence: the alert is to be
modal or movable modal depending on the value received in the formal parameter movable; a help button is to be displayed;

Dialogs and Alerts Version 1.0 8-57

the event filter (callback) function used is to be the application-defined event filter (callback) function pointed to by the
universal procedure pointer gEventFilterUPP; the default title for the OK push button is to be used; a Cancel push button is
required, and is to have the default title for the Cancel button; an Other push button is required, and is to have the title
"Other"; the default push button is to be the first push button (which will thus have the default ring drawn around it (Mac OS
8/9) or be pulsing blue (Mac OS X) and have the Return and Enter keys aliased to it); the Cancel push button is to be the
second push button (which will thus have escape and Command-period key presses aliased to it); the alert is to be displayed
in the alert position on the parent window screen. (With regard to the last field, the constant kWindowDefaultPosition equates
to kWindowAlertPositionParentWindowScreen.)

The calls to GetIndString retrieve the specified strings from the specified 'STR#' resource. These are passed in the inError and
inExplanation parameters in the following call to StandardAlert.

The call to StandardAlert creates and displays the alert (specifying a Stop alert in the first parameter), and handles all user
interaction (by internally calling ModalDialog), including dismissing the alert when either the OK, Cancel, or Other button is hit.
The item hit is returned in StandardAlert's outItemHit parameter.

In a real application, the appropriate action would be taken, based on which push button was hit, following the call to
StandardAlert; however, in this demonstration, the identity of the push button is simply drawn in the document window.

doMovableModalAlertOnX
doMovableModalAlertOnX creates, displays, manages, and disposes of the movable modal alert when the program is run on
Mac OS X. (The functions used in doMovableModalAlertOnX to create, display, and manage the alert are not available on Mac
OS 8/9.)

The call to doExplicitlyDeactivateDocument deactivates the document window.

The call to GetStandardAlertDefaultParams initialises a standard CFString alert parameter structure with default values. (The
defaults are: not movable; no Help button; no Cancel button; no Other button; alert position on parent window screen.) The
next four lines modify the defaults by specifying that the alert is to be movable modal, and is to have a Help, Cancel, and
Other, push button.

The two calls to GetIndString retrieve the specified strings from the specified 'STR#' resource, which are then converted to
CFStrings before being passed in the error and explanation fields in the following call to CreateStandardAlert.
CreateStandardAlert creates the alert.

The call to RunStandardAlert displays the alert and runs the alert using a ModalDialog loop. When a push button is clicked, its
item number is returned in the outItemHit parameter

In a real application, the appropriate action would be taken, based on which push button was hit, following the call to
RunStandardAlert; however, in this demonstration, the identity of the push button is simply drawn in the document window.

doModalDialog
doModalDialog creates, displays, manages, and disposes of the modal dialog.

The call to doExplicitlyDeactivateDocument deactivates the document window.

The call to GetNewDialog creates the modal dialog from the specified resource as the frontmost window.

The call to SetDialogDefaultItem tells the Dialog Manager which is the default push button item and aliases the Return and
Enter keys to that item. The call to SetDialogCancelItem tells the Dialog Manager which is the Cancel push button item, and
aliases the escape key and Command-period key presses to that item.

The next block gets handles to the three checkbox controls and sets the value of those controls to the current values
contained in the global variables relating to each control.

The call to NewMenu creates a new empty menu for a font menu. A reference to this menu is passed in the call to
CreateStandardFontMenu, which creates a non-hierarchical font menu containing the names of all resident fonts.
GetDialogItemAsControl gets a reference to the Font pop-up menu button control, facilitating the calls to SetControlMinimum,
SetControlMaximum, and SetControlData. The latter sets the menu to be used by the pop-up menu button control.

With the modal dialog fully prepared, it is made visible by the call to ShowWindow.

The do/while loop continues to execute until ModalDialog reports that either the OK or Cancel button has been "hit". Within
the loop, ModalDialog retains control until one of the enabled items has been hit.

If a checkbox is hit, GetDialogItemAsControl is called to get a reference to the control and SetControlValue is called to flip that
control's control value. (If it is 0, it is flipped to 1, and vice versa.) If one of the pop-up menu buttons is hit,
GetDialogItemAsControl is called to get a reference to the control and GetControlValue is called to get the menu item number
of the menu item chosen, following which an function is called to extract the menu item text and display it in the window
header.

Note that the first parameter in the ModalDialog call is a universal procedure pointer to the application-defined event filter
(callback) function.

When the do/while loop exits, and if the user hit the OK button, handles to each of the three checkboxes are retrieved for the
purposes of retrieving the control's value and assigning it to the relevant global variable. (If the user hit the Cancel button,
the global variables retain the values they contained before the dialog was created and displayed.)

8-58 Version 1.0 Dialogs and Alerts

The dialog is then disposed of.

doMovableModalDialog
doMovableModalDialog creates, displays, manages, and disposes of the movable modal dialog.

The call to doExplicitlyDeactivateDocument deactivates the document window.

The call to GetNewDialog creates the movable modal dialog from the specified resource as the frontmost window.

The call to SetDialogDefaultItem tells the Dialog Manager which is the default push button item and aliases the Return and
Enter keys to that item. The call to SetDialogCancelItem tells the Dialog Manager which is the Cancel push button item and
aliases the escape key and Command-period key presses to that item. The call to SetDialogTracksCursor tells the Dialog
Manager to track the cursor and change it to the I-Beam cursor shape whenever it is over an edit text item.

The first call to GetDialogItemAsControl gets a reference to the radio button control represented by the current value in the
global variable gBrushType. The value of that control is then set to 1. The second call to GetDialogItemAsControl gets a
reference to the clock control. The call to SetKeyboardFocus sets the keyboard focus to that item.

Before the session of user interaction begins, the current value in the global variable gBrushType, which stores the item
number of the currently selected radio button, is copied to the local variable oldBrushTupe. (This may be required later.)

With the movable modal dialog fully prepared, it is made visible by the call to ShowWindow.

The do/while loop continues to execute until ModalDialog reports that either the OK or Cancel button has been hit. Within the
loop, ModalDialog retains control until one of the enabled items is hit.

If a radio button is hit, a for loop sets the control value of all radio button controls to 0. A call to GetDialogItemAsControl then
gets a reference to the radio button control that was hit. A call to SetControlValue then sets that control's value to 1, and the
item number of this radio button is assigned to the global variable gBrushType.

Note that the first parameter in the ModalDialog call is a universal procedure pointer to the application-defined event filter
(callback) function. Note also that all user interaction relating to the clock control and edit text item is handled automatically
by ModalDialog, including the movement of keyboard focus between the items.

When the do/while loop exits, and if the user hit the Cancel button, the value stored in the local variable oldBrushType is
assigned to gBrushType, ensuring that any change to the currently selected radio button within the do/while loop is ignored.
(In a real application, a long date/time value from the clock control, and the text from the edit text item would possibly be
retrieved at this point if the user hit the OK push button.)

doCreateOrShowModelessDialog
In this program, the modeless dialog is only created once, that is, when the user first chooses Modeless Dialog from the
Demonstration menu. Clicks in its close box/button, or choosing Close from the File menu while the modeless dialog is the
frontmost window, will cause the dialog to be hidden, not disposed of.

Accordingly, the first line determines whether the modeless dialog is already open. If it is not: the call to GetNewDialog
creates the modeless dialog; the call to SetWRefCon assigns the reference constant kSearchModeless to the dialog object's
window object so as to differentiate this dialog from the window-modal (sheet) dialog; a call to SetDialogDefaultItem causes
the push button to be drawn with the default ring (Mac OS 8/9) or in pulsing blue (Mac OS X); a call to SetDialogItemText
assigns some initial text to the edit text item; a call to SelectDialogItemText selects the text in the edit text item. (Note that,
if the edit text item did not contain text, this latter call would simply display the insertion point caret, which would be made to
blink by the call to IdleControls within the function doIdle (Mac OS 8/9).)

If, on the other hand, the modeless dialog has already been opened, the call to ShowWindow displays the dialog and the call
to SelectWindow generates the necessary activate events.

doInContent
doInContent continues the content region mouse-down handling initiated by doMouseDown. doInContent is called by
doMouseDown only if the mouse-down occurred in the frontmost (active) window.

If the event occurred in the document window, the mouse-down event would be handled in the if section of the if/else block.
(No action is required in this demonstration.)

If the event occurred in the modeless dialog or the window-modal (sheet) dialog (both of which contain an edit text item),
DialogSelect is called to handle the event. DialogSelect tracks enabled controls (only the push button is enabled), returning
true if the mouse button is released while the cursor is still inside the control, and highlights any selection made in the edit
text item. If DialogSelect returns true, and if the item hit was the OK push button, a function is called to perform the actions
required in the event of a hit on that button.

doButtonHitInSearchModeless
doButtonHitInSearchModeless further processes, to completion, a hit on the OK (Search) button in the modeless dialog. It
simply demonstrates retrieval of the text in an edit text item in a dialog.

The call to GetDialogItemAsControl gets a reference to the edit text control, and the call to GetDialogItemText copies the text
in the edit text control to the global variable gCurrentString. The following lines cause that text to be drawn in the window
header in the document window.

Dialogs and Alerts Version 1.0 8-59

doHideModelessDialog
doHideModelessDialog hides a modeless dialog. The call to HideWindow makes the dialog invisible. The sleep parameter for
the WaitNextEvent function is reset to the maximum possible long value (relevant only on Mac OS 8/9), because insertion
point caret blinking is not required while the Search dialog is hidden.

eventFilter
eventFilter is the application-defined event filter (callback) function which, in conjunction with ModalDialog, handles events in
the modal alerts, movable modal alert on OS 8/9, modal dialog and movable modal dialog.

If the program is running on Mac OS 8/9, if the event is an update event, and if that event is not for the dialog or alert in
question, the application's document window updating function is called and false is returned. This response to an update
event in the application's own document windows also allows ModalDialog to perform a minor switch when necessary so that
background applications can update their windows as well. The call to the window updating function is not necessary on Mac
OS X.

If the event is an autoKey event and the Command key is down, the event is, in effect, discarded. This means that, if the user
is working within the edit text item in the movable modal dialog and presses and holds the Command key equivalents for Cut,
Copy or Paste, repeating cut, copy and paste actions will be defeated. That is, pressing and holding the Command key
equivalent will only result in a single cut, copy, or paste action. (See also doEvents, above.)

If the event is neither an update event nor an autoKey event with the Command key down, the current graphics port is saved
and then set to that of the alert or dialog. The event is then passed to the standard event filter (callback) function for
handling. If the standard event filter (callback) function handles the event, it will return true and, in the itemHit parameter,
the number of the item that it handled. ModalDialog will then return this item number. A call to SetPort then restores the
previously save graphics port.

Note that the calls to GetPort and SetPort are actually redundant when this event filter (callback) function is used by all but
the movable modal dialog. The calls are only necessary when SetDialogTracksCursor has been called to cause the Dialog
Manager to automatically track the cursor, and the movable modal dialog is the only dialog which requires this tracking
(because it contains an edit text item.)

doPopupMenuChoice, doPlaySound, doDrawMessage, and
doCopyPString
doPopupMenuChoice, doPlaySound, doDrawMessage, and doCopyPString are incidental to the demonstration. All perform the
same duties as the similarly-named functions in the demonstration program Controls1 (Chapter 7). doDrawMessage is used in
this program to prove the explicit deactivation of the document window's content area when alerts and dialogs other than the
modeless dialog are invoked.

Sheets.c
Global Variables
gSheetDialogWindowRe will be assigned the window reference of the window-modal (sheet) dialog.

doSheetAlert
doSheetAlert creates, displays and handles a window-modal (sheet) alert.

The call to GetStandardAlertDefaultParams initialises a standard CFString alert parameter structure with default values.

The two calls to GetIndString retrieve the specified strings from the specified 'STR#' resource, which are then converted to
CFStrings before being passed in the error and explanation fields in the following call to CreateStandardSheet, which creates
the alert. The call to ShowSheetWindow displays the sheet. When the user clicks the OK button, the sheet is dismissed.

doSheetDialog
doSheetAlert creates and displays a window-modal (sheet) dialog.

The call to GetNewDialog creates the dialog from the specified resource. The call to SetWRefCon assigns a value as the dialog
window's reference constant. This is used elsewhere to differentiate the window-modal (sheet) dialog from the modeless
dialog.

The call to SetDialogDefaultItem causes the push button to be drawn with the default ring (Mac OS 8/9) or in pulsing blue (Mac
OS X). The call to SetDialogItemText assigns some initial text to the edit text item and the call to SelectDialogItemText
selects that text.

The next line assigns a reference to the dialog's window to the global variable gSheetDialogWindowRef. This is used in the
function doButtonHitInSheetDialog.

The call to ShowSheetWindow displays the sheet.

doButtonHitInSheetDialog
doButtonHitInSearchModeless is called from doKeyDown and doInContent to further process, to completion, a hit on the OK
button in the window-modal (sheet) dialog. In addition to retrieving the text in an edit text item, it hides and disposes of the
dialog.

8-60 Version 1.0 Dialogs and Alerts

	DIALOGS AND ALERTS
	Demonstration Program: DialogsAndAlerts
	Introduction
	Alert Types, Modalities, and Levels
	Alert Types and Modalities
	Modal Alert
	Movable Modal Alert
	Window-Modal (Sheet) Alert — Mac OS X

	Levels of Alert

	Note that, at the time of writing, there was no visual distinction between alert levels on Mac OS X, the application icon rather than distinct note, caution, and stop icons being displayed. At the time of writing, it was expected that Carbon would eventually support the "badging" of the application icon with alert level badges similar to the Mac OS 8/9 note, caution, and stop icons.
	Dialog Types and Modalities
	There are four types of dialog, namely, modal dialogs, movable modal dialogs, modeless dialogs, and, on Mac OS X only, sheet dialogs. The four types are illustrated in the examples at Fig 2.
	Modal Dialog
	Movable Modal Dialog
	Modeless Dialog
	Window-Modal (Sheet) Dialog — Mac OS X

	Window Types For Alerts and Dialogs
	Code

	Content of Alerts and Dialogs
	Default Push Buttons

	Removing Dialogs
	Creating and Removing Alerts
	The StandardAlert Function
	Standard Alert Parameter Structure

	The standard alert parameter structure is as follows:
	Field Descriptions
	Alert Default Text Constants
	Alert Push Button Constants
	Positioning Specification

	The main constants for the positioning specification field are as follows:
	The CreateStandardAlert Function
	Removal of Alerts

	Creating Dialogs
	Dialogs may be created in one of two ways, as follows:
	The Dialog Object
	Accessor Functions

	The following accessor functions are provided to access the information in dialog objects.
	'DLOG' and 'dlgx' Resources
	Structure of a Compiled 'DLOG' Resource

	Fig 5 shows the structure of a compiled 'DLOG' resource and how it "feeds" the dialog object.
	The following describes the main fields of the 'DLOG' resource:
	Structure of a Compiled 'dlgx' Resource

	The following describes the main field of the 'dlgx' resource:
	Dialog Feature Flag Constants
	Creating 'dlgx ' and 'DLOG' Resources Using Resorcerer
	Creating 'dlgx' Resources

	Fig 7 shows a 'dlgx' resource being created with Resorcerer.
	Creating 'DLOG' Resources

	Fig 8 shows a 'DLOG' resource being created with Resorcerer.
	The NewFeaturesDialog Function

	The function NewFeaturesDialog creates a dialog from the information passed in its parameters.
	Returns: A pointer to the new dialog, or NULL if the dialog is not created
	Items in Dialogs
	Preamble — Dialog Manager Primitives

	The primitives, and their control equivalents, are as follows:
	The 'DITL' Resource

	Items are usually referred to by their position in the item list, that is, by their item number.
	The following describes the fields of the 'DITL' resource and the control item:
	Display Rectangles
	Creating a 'DITL' Resource Using Resorcerer
	Layout Guidelines For Dialogs
	Default Push Buttons
	Enabling and Disabling Items
	Keyboard Focus
	Manipulating Items
	Functions for Manipulating Items

	Dialog Manager functions for manipulating items are as follows:
	Append Method Constants
	Getting and Setting The Text in Edit Text and Static Text Items
	Setting the Font For Controls in a Dialog — 'dftb' Resources
	Structure of a Compiled 'dftb' Resource

	Fig 11 shows the structure of a compiled 'dftb' resource and of a constituent dialog font table entry.
	The following describes the main fields of the 'dftb' resource and the dialog control font entry:
	Dialog Font Flag Constants
	Meta Font Constants
	Creating a 'dftb' Resource Using Resorcerer

	Fig 12 shows a dialog control font entry in a 'dftb' resource being edited with Resorcerer.
	Displaying Alerts and Dialogs
	As previously stated:
	Window Deactivation and Menu Adjustment

	When an alert or dialog is displayed:
	Note
	Window Deactivation — Modeless Dialogs
	Window Deactivation — Modal and Movable Modal Alerts and Dialogs
	Menu Adjustment — Modeless Dialogs

	Your application is also responsible for all menu enabling when a modeless dialog is dismissed.
	Menu Adjustment — Modal Alerts and Dialogs
	Menu Adjustment — Movable Modal Alerts and Dialogs
	Displaying Multiple Alerts and Dialogs
	Resizing a Dialog

	Handling Events in Alerts and Dialogs
	Overview
	Modal and Movable Modal Alerts and Dialogs
	Modeless Dialogs

	Responding to Events in Controls
	Controls and Control Values
	Controls That Accept Keyboard Input
	Caret Blinking in Edit Text Controls

	Responding to Events in Modal and Movable Modal Alerts
	Responding To Events in Modal and Movable Modal Dialogs

	If your event filter (callback) function does not handle the event, ModalDialog handles the event as follows:
	Specifying the Events To Be Received by ModalDialog

	You can ascertain the events to be received by ModalDialog by calling GetModalDialogEventMask.
	Simulating Item Selection
	Event Filter (Callback) Functions For Modal and Movable Modal Alerts and Dialogs

	The standard event filter (callback) function performs the following checks and actions:
	Defining an Event Filter (Callback) Function

	SetDialogDefaultItem(myDialogRef,iOK);
	SetDialogCancelItem(myDialogRef,iCancel);
	SetDialogTracksCursor(myDialogRef,true);
	Responding to Events in Modeless Dialogs

	Closing and Disposing of Dialogs
	Creating Displaying and Handling Window-Modal (Sheet) Alerts and Dialogs
	Window-Modal (Sheet) Alerts
	Window-Modal (Sheet) Dialogs

	Balloon Help For Dialogs — Mac OS 8/9
	Two basic options are available for adding help balloons to dialogs for Mac OS 8/9:
	Help Tags For Dialogs — Mac OS X
	Main Dialog Manager Constants, Data Types and Functions
	Constants
	Dialog Item Types
	Standard Item Numbers for OK and Cancel Push Buttons
	Resource IDs of Alert Icons
	Dialog Item List Manipulation
	Alert Types
	Standard Alert Push Button Numbers
	Alert Default Text
	Dialog Feature Flags
	Dialog Font Flags
	Constants Used for in NewFeaturesDialog inProcID Parameter

	Data Types
	Standard Alert Parameter Structure
	Standard CFStringAlert Alert Paramater Structure

	Functions
	Creating Alerts
	Creating, Closing, and Disposing of Dialogs
	Creating Sheets (Mac OS X Only)
	Dialog Object Accessor Functions
	Utility and Casting Functions
	Manipulating Items in Alerts and Dialogs
	Handling Text in Alerts and Dialogs
	Handling Events in Dialogs
	Creating and Disposing of Universal Procedure Pointers for Event Filter (Callback) Functions
	Application-Defined (Callback) Function

	Relevant Window Manager Functions (Mac OS X Only)
	Showing and Hiding Sheets

	Demonstration Program DialogAndAlerts Listing
	Demonstration Program DialogsAndAlerts Comments
	DialogsAndAlerts.h
	defines

	DialogsAndAlerts.c
	Global Variables
	main

	The call to NewModalFilterUPP creates a universal procedure pointer for the event filter (callback) function.
	eventLoop
	doIdle
	doEvents
	doMouseDown
	doKeyDown
	doUpdate
	doUpdateDocument
	doActivate
	doActivateDocument
	doActivateDialogs
	doAdjustMenus
	doMenuChoice
	doEditMenu
	doDemonstrationMenu
	doExplicitlyDeactivateDocument
	doModalAlerts
	doMovableModalAlertOnX
	doModalDialog

	With the modal dialog fully prepared, it is made visible by the call to ShowWindow.
	doMovableModalDialog

	With the movable modal dialog fully prepared, it is made visible by the call to ShowWindow.
	doCreateOrShowModelessDialog
	doInContent
	doButtonHitInSearchModeless
	doHideModelessDialog
	eventFilter
	doPopupMenuChoice, doPlaySound, doDrawMessage, and doCopyPString
	Sheets.c
	Global Variables
	doSheetAlert
	doSheetDialog
	doButtonHitInSheetDialog

